Equivalent a Posteriori Error Estimators for Semilinear Elliptic Equations with Dirac Right-Hand Side

Equivalent a Posteriori Error Estimators for Semilinear Elliptic Equations with Dirac Right-Hand Side

Year:    2020

Author:    Wenting Mao, Yanping Chen, Haitao Leng

Advances in Applied Mathematics and Mechanics, Vol. 12 (2020), Iss. 3 : pp. 835–848

Abstract

In this paper, we consider a semilinear elliptic equation with Dirac right-hand side. An equivalent a posteriori error estimator for the $L^{s}$ norm is obtained. We note that the a posteriori error estimator can be used to design adaptive finite element algorithms. In the end, some examples are provided to examine the quality of the derived estimator.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.OA-2019-0329

Advances in Applied Mathematics and Mechanics, Vol. 12 (2020), Iss. 3 : pp. 835–848

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Elliptic equation Dirac a posteriori error estimator semilinear $L^s$ error estimates.

Author Details

Wenting Mao

Yanping Chen

Haitao Leng