Gradient Recovery-Type a Posteriori Error Estimates for Steady-State Poisson-Nernst-Planck Equations

Gradient Recovery-Type a Posteriori Error Estimates for Steady-State Poisson-Nernst-Planck Equations

Year:    2020

Author:    Ruigang Shen, Shi Shu, Ying Yang, Mingjuan Fang

Advances in Applied Mathematics and Mechanics, Vol. 12 (2020), Iss. 6 : pp. 1353–1383

Abstract

In this article, we derive the a posteriori error estimators for a class of steady-state Poisson-Nernst-Planck equations. Using the gradient recovery operator, the upper and lower bounds of the a posteriori error estimators are established both for the electrostatic potential and concentrations. It is shown by theory and numerical experiments that the error estimators are reliable and the associated adaptive computation is efficient for the steady-state PNP systems.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.OA-2019-0046

Advances in Applied Mathematics and Mechanics, Vol. 12 (2020), Iss. 6 : pp. 1353–1383

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    31

Keywords:    Poisson-Nernst-Planck equations gradient recovery a posteriori error estimate.

Author Details

Ruigang Shen

Shi Shu

Ying Yang

Mingjuan Fang