Nonconforming FEMs for the $p$-Laplace Problem

Nonconforming FEMs for the $p$-Laplace Problem

Year:    2018

Author:    D. J. Liu, A. Q. Li, Z. R. Chen

Advances in Applied Mathematics and Mechanics, Vol. 10 (2018), Iss. 6 : pp. 1365–1383

Abstract

The $p$-Laplace problems in topology optimization eventually lead to a degenerate convex minimization problem $E(v):= ∫_ΩW(∇v)dx − ∫_Ωf vdx$ for $v∈W^{1,p}_0(Ω)$ with unique minimizer $u$ and stress $σ := DW(∇u)$. This paper proposes the discrete Raviart-Thomas mixed finite element method (dRT-MFEM) and establishes its equivalence with the Crouzeix-Raviart nonconforming finite element method (CR-NCFEM). The sharper quasi-norm a priori and a posteriori error estimates of this two methods are presented. Numerical experiments are provided to verify the analysis.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.OA-2018-0117

Advances in Applied Mathematics and Mechanics, Vol. 10 (2018), Iss. 6 : pp. 1365–1383

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Adaptive finite element methods nonconforming $p$-Laplace problem dual energy.

Author Details

D. J. Liu

A. Q. Li

Z. R. Chen

  1. Nonconforming discretizations of convex minimization problems and precise relations to mixed methods

    Bartels, Sören

    Computers & Mathematics with Applications, Vol. 93 (2021), Iss. P.214

    https://doi.org/10.1016/j.camwa.2021.04.014 [Citations: 14]
  2. Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem

    Kaltenbach, Alex

    Journal of Numerical Mathematics, Vol. 32 (2024), Iss. 2 P.111

    https://doi.org/10.1515/jnma-2022-0106 [Citations: 3]
  3. Error Control, Adaptive Discretizations, and Applications, Part 1

    Exact a posteriori error control for variational problems via convex duality and explicit flux reconstruction

    Bartels, Sören | Kaltenbach, Alex

    2024

    https://doi.org/10.1016/bs.aams.2024.04.001 [Citations: 0]
  4. The adaptive finite element method for the P-Laplace problem

    Liu, D.J. | Chen, Z.R.

    Applied Numerical Mathematics, Vol. 152 (2020), Iss. P.323

    https://doi.org/10.1016/j.apnum.2019.11.018 [Citations: 4]
  5. Error analysis for a Crouzeix–Raviart approximation of the variable exponent Dirichlet problem

    Balci, Anna Kh | Kaltenbach, Alex

    IMA Journal of Numerical Analysis, Vol. (2024), Iss.

    https://doi.org/10.1093/imanum/drae025 [Citations: 1]