Year: 2017
Author: Xia Ji, Yingxia Xi, Hehu Xie
Advances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 1 : pp. 92–103
Abstract
In this paper, we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions. The error estimates of the eigenvalue and eigenfunction approximation are given, respectively. Finally, some numerical examples are provided to validate the theoretical results.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/aamm.2015.m1295
Advances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 1 : pp. 92–103
Published online: 2017-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: Transmission eigenvalue Morley element nonconforming finite element method.
Author Details
-
A Novel Spectral Approximation and Error Estimation for Transmission Eigenvalues in Spherical Domains
An, Jing | Tan, Ting | Zhang, ZhiminJournal of Scientific Computing, Vol. 96 (2023), Iss. 2
https://doi.org/10.1007/s10915-023-02261-y [Citations: 2] -
Lowest-degree robust finite element schemes for inhomogeneous bi-Laplace problems
Dai, Bin | Zeng, Huilan | Zhang, Chen-Song | Zhang, ShuoApplied Numerical Mathematics, Vol. 203 (2024), Iss. P.235
https://doi.org/10.1016/j.apnum.2024.05.010 [Citations: 0] -
Legendre spectral method and error estimates for Helmholtz transmission eigenvalues in a cylinder
Tan, Ting | Cao, WaixiangIMA Journal of Numerical Analysis, Vol. (2024), Iss.
https://doi.org/10.1093/imanum/drae041 [Citations: 0] -
Discontinuous Galerkin Method for the Interior Transmission Eigenvalue Problem in Inverse Scattering Theory
Meng, Jian
Journal of Scientific Computing, Vol. 96 (2023), Iss. 3
https://doi.org/10.1007/s10915-023-02290-7 [Citations: 1] -
A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media
Liu, Qing | Li, Tiexiang | Zhang, ShuoInverse Problems, Vol. 39 (2023), Iss. 5 P.055005
https://doi.org/10.1088/1361-6420/acc7c1 [Citations: 1] -
A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
Meng, Jian | Wang, Gang | Mei, LiquanCalcolo, Vol. 58 (2021), Iss. 1
https://doi.org/10.1007/s10092-020-00391-5 [Citations: 5] -
Spectral approximation and error analysis for the transmission eigenvalue problem with an isotropic inhomogeneous medium
Tan, Ting | Cao, WaixiangJournal of Computational and Applied Mathematics, Vol. 453 (2025), Iss. P.116163
https://doi.org/10.1016/j.cam.2024.116163 [Citations: 0] -
A multi-level mixed element scheme of the two-dimensional Helmholtz transmission eigenvalue problem
Xi, Yingxia | Ji, Xia | Zhang, ShuoIMA Journal of Numerical Analysis, Vol. 40 (2020), Iss. 1 P.686
https://doi.org/10.1093/imanum/dry061 [Citations: 8] -
Spectral approximation based on a mixed scheme and its error estimates for transmission eigenvalue problems
Tan, Ting | Cao, Waixiang | An, JingComputers & Mathematics with Applications, Vol. 111 (2022), Iss. P.20
https://doi.org/10.1016/j.camwa.2022.02.009 [Citations: 10] -
Convergence of a lowest-order finite element method for the transmission eigenvalue problem
Camaño, Jessika | Rodríguez, Rodolfo | Venegas, PabloCalcolo, Vol. 55 (2018), Iss. 3
https://doi.org/10.1007/s10092-018-0276-1 [Citations: 17] -
Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
Meng, Jian | Wang, Gang | Mei, LiquanIMA Journal of Numerical Analysis, Vol. 43 (2023), Iss. 3 P.1685
https://doi.org/10.1093/imanum/drac019 [Citations: 5] -
A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
Xi, Yingxia | Ji, Xia | Zhang, ShuoJournal of Scientific Computing, Vol. 83 (2020), Iss. 3
https://doi.org/10.1007/s10915-020-01247-4 [Citations: 5]