Numerical Solution of Euler-Lagrange Equation with Caputo Derivatives

Numerical Solution of Euler-Lagrange Equation with Caputo Derivatives

Year:    2017

Author:    Tomasz Blaszczyk, Mariusz Ciesielski

Advances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 1 : pp. 173–185

Abstract

In this paper the fractional Euler-Lagrange equation is considered. The fractional equation with the left and right Caputo derivatives of order α ∈ (0,1] is transformed into its corresponding integral form. Next, we present a numerical solution of the integral form of the considered equation. On the basis of numerical results, the convergence of the proposed method is determined. Examples of numerical solutions of this equation are shown in the final part of this paper.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.2015.m970

Advances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 1 : pp. 173–185

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords:    Fractional Euler-Lagrange equation fractional integral equation numerical solution Caputo derivatives.

Author Details

Tomasz Blaszczyk

Mariusz Ciesielski

  1. On the motion of a heavy bead sliding on a rotating wire – Fractional treatment

    Baleanu, Dumitru | Asad, Jihad H. | Alipour, Mohsen

    Results in Physics, Vol. 11 (2018), Iss. P.579

    https://doi.org/10.1016/j.rinp.2018.09.007 [Citations: 4]
  2. Numerical algorithms for approximation of fractional integral operators based on quadratic interpolation

    Blaszczyk, Tomasz | Siedlecki, Jaroslaw | Ciesielski, Mariusz

    Mathematical Methods in the Applied Sciences, Vol. 41 (2018), Iss. 9 P.3345

    https://doi.org/10.1002/mma.4828 [Citations: 6]
  3. On a fractional boundary value problem in a weighted space

    Guezane-Lakoud, A. | Rodríguez-López, R.

    SeMA Journal, Vol. 75 (2018), Iss. 3 P.435

    https://doi.org/10.1007/s40324-017-0142-0 [Citations: 4]
  4. Nonlinear differential equations involving mixed fractional derivatives with functional boundary data

    Zhang, Shuqin | Sun, Bingzhi

    Mathematical Methods in the Applied Sciences, Vol. 45 (2022), Iss. 10 P.5930

    https://doi.org/10.1002/mma.8147 [Citations: 4]
  5. Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives

    Murad, Shayma A. | Ameen, Zanyar A.

    AIMS Mathematics, Vol. 7 (2022), Iss. 4 P.6404

    https://doi.org/10.3934/math.2022357 [Citations: 8]
  6. Metallization and superconductivity in Ca-intercalated bilayer MoS2

    Szczȱśniak, R. | Durajski, A.P. | Jarosik, M.W.

    Journal of Physics and Chemistry of Solids, Vol. 111 (2017), Iss. P.254

    https://doi.org/10.1016/j.jpcs.2017.08.003 [Citations: 13]
  7. Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory

    Blaszczyk, Tomasz | Bekus, Krzysztof | Szajek, Krzysztof | Sumelka, Wojciech

    Meccanica, Vol. 57 (2022), Iss. 4 P.861

    https://doi.org/10.1007/s11012-021-01364-w [Citations: 9]
  8. Existence of solutions for weighted p(t)-Laplacian mixed Caputo fractional differential equations at resonance

    Guezane, Lakoud | Ashyralyev, Allaberen

    Filomat, Vol. 36 (2022), Iss. 1 P.231

    https://doi.org/10.2298/FIL2201231G [Citations: 4]
  9. Spontaneous magnetization of ferromagnet in mean-field Heisenberg model

    Durajski, Artur P. | Olesik, Anna B. | Auguscik, Anita E.

    Modern Physics Letters B, Vol. 33 (2019), Iss. 04 P.1950036

    https://doi.org/10.1142/S0217984919500362 [Citations: 1]
  10. Existence of solutions for a mixed fractional boundary value problem

    Lakoud, A Guezane | Khaldi, R | Kılıçman, Adem

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-017-1226-y [Citations: 29]
  11. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    Szcześniak, R. | Jarosik, M.W. | Tarasewicz, P. | Durajski, A.P.

    Physica B: Condensed Matter, Vol. 536 (2018), Iss. P.726

    https://doi.org/10.1016/j.physb.2017.11.008 [Citations: 2]
  12. Fractional Derivative Analysis of Wave Propagation Studies Using Eringen’s Nonlocal Model with Elastic Medium Support

    Senthilkumar, Vaiyapuri

    Journal of Vibration Engineering & Technologies, Vol. 11 (2023), Iss. 8 P.3677

    https://doi.org/10.1007/s42417-022-00775-7 [Citations: 2]
  13. On resonant mixed Caputo fractional differential equations

    Guezane-Lakoud, Assia | Kılıçman, Adem

    Boundary Value Problems, Vol. 2020 (2020), Iss. 1

    https://doi.org/10.1186/s13661-020-01465-7 [Citations: 5]