Solution of the Magnetohydrodynamics Jeffery-Hamel Flow Equations by the Modified Adomian Decomposition Method

Solution of the Magnetohydrodynamics Jeffery-Hamel Flow Equations by the Modified Adomian Decomposition Method

Year:    2015

Author:    Lei Lu, Junsheng Duan, Longzhen Fan

Advances in Applied Mathematics and Mechanics, Vol. 7 (2015), Iss. 5 : pp. 675–686

Abstract

In this paper, the nonlinear boundary value problem (BVP) for the Jeffery-Hamel flow equations taking into consideration the magnetohydrodynamics (MHD) effects is solved by using the modified Adomian decomposition method. We first transform the original two-dimensional MHD Jeffery-Hamel problem into an equivalent third-order BVP, then solve by the modified Adomian decomposition method for analytical approximations. Ultimately, the effects of Reynolds number and Hartmann number are discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.2014.m543

Advances in Applied Mathematics and Mechanics, Vol. 7 (2015), Iss. 5 : pp. 675–686

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:   

Author Details

Lei Lu

Junsheng Duan

Longzhen Fan

  1. Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives

    Ghanbari, Behzad | Gómez-Aguilar, J.F.

    Chaos, Solitons & Fractals, Vol. 116 (2018), Iss. P.114

    https://doi.org/10.1016/j.chaos.2018.09.026 [Citations: 86]
  2. Homotopy Analysis Sumudu Transform Method for Solving a Class of Time Fractional Partial Differential Equations

    杨, 博慧

    Pure Mathematics, Vol. 07 (2017), Iss. 04 P.322

    https://doi.org/10.12677/PM.2017.74042 [Citations: 1]
  3. Bernoulli wavelet application to the numerical solution of Jeffery–Hamel flow problem

    Kumar, Manoj

    Numerical Heat Transfer, Part B: Fundamentals, Vol. (2024), Iss. P.1

    https://doi.org/10.1080/10407790.2024.2325026 [Citations: 4]
  4. Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel

    Gómez-Aguilar, JF | Yépez-Martínez, H | Torres-Jiménez, J | Córdova-Fraga, T | Escobar-Jiménez, RF | Olivares-Peregrino, VH

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-017-1120-7 [Citations: 70]
  5. Investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by DTM

    Raghunatha, K. R. | Siddanagowdru, S. O.

    Heat Transfer, Vol. 51 (2022), Iss. 4 P.3562

    https://doi.org/10.1002/htj.22463 [Citations: 4]
  6. Modeling and Simulation of Nanofluid Flow Problems

    2020

    https://doi.org/10.1007/978-3-031-79657-9 [Citations: 2]
  7. Numerical solution of the Jeffery–Hamel flow through the wavelet technique

    Kumbinarasaiah, S. | Raghunatha, K. R.

    Heat Transfer, Vol. 51 (2022), Iss. 2 P.1568

    https://doi.org/10.1002/htj.22364 [Citations: 24]
  8. Series Solution for the Time-Fractional Coupled mKdV Equation Using the Homotopy Analysis Method

    Gómez-Aguilar, J. F. | Yépez-Martínez, H. | Escobar-Jiménez, R. F. | Olivares-Peregrino, V. H. | Reyes, J. M. | Sosa, I. O.

    Mathematical Problems in Engineering, Vol. 2016 (2016), Iss. P.1

    https://doi.org/10.1155/2016/7047126 [Citations: 43]
  9. Study of MHD nanofluid flow with fuzzy volume fraction in thermal field-flow fractionation

    Meher, R. | Verma, L. | Avazzadeh, Z. | Nikan, O.

    AIP Advances, Vol. 13 (2023), Iss. 1

    https://doi.org/10.1063/5.0123116 [Citations: 10]
  10. Modeling and Simulation of Nanofluid Flow Problems

    Nanofluid Flow Between Two Inclined Planes

    Chakraverty, Snehashish | Biswal, Uddhaba

    2020

    https://doi.org/10.1007/978-3-031-79657-9_3 [Citations: 0]
  11. Study of Jeffery-Hamel flow problem for nanofluid with fuzzy volume fraction using double parametric based Adomian decomposition method

    Biswal, Uddhaba | Chakraverty, Snehashish | Ojha, Bata Krushna | Hussein, Ahmed Kadhim

    International Communications in Heat and Mass Transfer, Vol. 126 (2021), Iss. P.105435

    https://doi.org/10.1016/j.icheatmasstransfer.2021.105435 [Citations: 13]
  12. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular

    Morales-Delgado, Victor Fabian | Gómez-Aguilar, José Francisco | Yépez-Martínez, Huitzilin | Baleanu, Dumitru | Escobar-Jimenez, Ricardo Fabricio | Olivares-Peregrino, Victor Hugo

    Advances in Difference Equations, Vol. 2016 (2016), Iss. 1

    https://doi.org/10.1186/s13662-016-0891-6 [Citations: 81]