Year: 2014
Author: M. H. Heydari, M. R. Hooshmandasl, F. Mohammadi
Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 2 : pp. 247–260
Abstract
In this paper, we develop an accurate and efficient Legendre wavelets method for numerical solution of the well known time-fractional telegraph equation. In the proposed method we have employed both of the operational matrices of fractional integration and differentiation to get numerical solution of the time-telegraph equation. The power of this manageable method is confirmed. Moreover, the use of Legendre wavelet is found to be accurate, simple and fast.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/aamm.12-m12132
Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 2 : pp. 247–260
Published online: 2014-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 14
Keywords: Telegraph equation Legendre wavelets fractional calculus Caputo derivative.
Author Details
-
On the accuracy of the Haar wavelet discretization method
Majak, J. | Shvartsman, B. | Karjust, K. | Mikola, M. | Haavajõe, A. | Pohlak, M.Composites Part B: Engineering, Vol. 80 (2015), Iss. P.321
https://doi.org/10.1016/j.compositesb.2015.06.008 [Citations: 73] -
A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation
Shekari, Younes | Tayebi, Ali | Heydari, Mohammad HosseinComputer Methods in Applied Mechanics and Engineering, Vol. 350 (2019), Iss. P.154
https://doi.org/10.1016/j.cma.2019.02.035 [Citations: 44] -
Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method
Sweilam, N. H. | Nagy, A. M. | El-Sayed, Adel A.Mediterranean Journal of Mathematics, Vol. 13 (2016), Iss. 6 P.5119
https://doi.org/10.1007/s00009-016-0796-3 [Citations: 29] -
Wavelets method for the time fractional diffusion-wave equation
Heydari, M.H. | Hooshmandasl, M.R. | Maalek Ghaini, F.M. | Cattani, C.Physics Letters A, Vol. 379 (2015), Iss. 3 P.71
https://doi.org/10.1016/j.physleta.2014.11.012 [Citations: 90] -
An efficient wavelet-based approximation method for the coupled nonlinear fractal–fractional 2D Schrödinger equations
Heydari, M. H. | Hosseininia, M. | Avazzadeh, Z.Engineering with Computers, Vol. 37 (2021), Iss. 3 P.2129
https://doi.org/10.1007/s00366-020-00934-y [Citations: 10] -
A High Order Numerical Scheme for Time-Fractional Telegraph Equation Via Cubic Spline in Tension
Chawla, Reetika | Kumar, DevendraDifferential Equations and Dynamical Systems, Vol. (2024), Iss.
https://doi.org/10.1007/s12591-024-00678-x [Citations: 0] -
A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions
Roohi, R. | Heydari, M. H. | Aslami, M. | Mahmoudi, M. R.The European Physical Journal Plus, Vol. 133 (2018), Iss. 10
https://doi.org/10.1140/epjp/i2018-12204-x [Citations: 39] -
A wavelet approach for the multi-term time fractional diffusion-wave equation
Soltani Sarvestani, F. | Heydari, M. H. | Niknam, A. | Avazzadeh, Z.International Journal of Computer Mathematics, Vol. 96 (2019), Iss. 3 P.640
https://doi.org/10.1080/00207160.2018.1458097 [Citations: 26] -
Legendre Wavelets Direct Method for the Numerical Solution of Time-Fractional Order Telegraph Equations
Xu, Xiaoyong | Xu, DaMediterranean Journal of Mathematics, Vol. 15 (2018), Iss. 1
https://doi.org/10.1007/s00009-018-1074-3 [Citations: 15] -
Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions
Qiao, Leijie | Qiu, Wenlin | Xu, DaMathematics and Computers in Simulation, Vol. 205 (2023), Iss. P.205
https://doi.org/10.1016/j.matcom.2022.10.001 [Citations: 15] -
Legendre wavelets optimization method for variable-order fractional Poisson equation
Heydari, Mohammad Hossein | Avazzadeh, ZakiehChaos, Solitons & Fractals, Vol. 112 (2018), Iss. P.180
https://doi.org/10.1016/j.chaos.2018.04.028 [Citations: 51] -
Efficient solutions to time-fractional telegraph equations with Chebyshev neural networks
Ali, Amina Hassan | Senu, Norazak | Ahmadian, AliPhysica Scripta, Vol. 99 (2024), Iss. 11 P.115210
https://doi.org/10.1088/1402-4896/ad7c93 [Citations: 0] -
Numerical solution of time-fractional telegraph equations using wavelet transform
Mulimani, Mallanagoud | S, KumbinarasaiahInternational Journal of Dynamics and Control, Vol. 12 (2024), Iss. 7 P.2166
https://doi.org/10.1007/s40435-023-01318-y [Citations: 3] -
A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation
Heydari, Mohammad Hossein | Avazzadeh, Zakieh | Haromi, Malih FarziApplied Mathematics and Computation, Vol. 341 (2019), Iss. P.215
https://doi.org/10.1016/j.amc.2018.08.034 [Citations: 28] -
Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels⋆
Avazzadeh, Z. | Heydari, M. H. | Cattani, C.The European Physical Journal Plus, Vol. 134 (2019), Iss. 7
https://doi.org/10.1140/epjp/i2019-12743-6 [Citations: 18] -
A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation
Hosseininia, M. | Heydari, M.H. | Maalek Ghaini, F.M. | Avazzadeh, Z.Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 12 P.3713
https://doi.org/10.1016/j.camwa.2019.06.008 [Citations: 33] -
Fractional Chebyshev deep neural network (FCDNN) for solving differential models
Hajimohammadi, Zeinab | Baharifard, Fatemeh | Ghodsi, Ali | Parand, KouroshChaos, Solitons & Fractals, Vol. 153 (2021), Iss. P.111530
https://doi.org/10.1016/j.chaos.2021.111530 [Citations: 13] -
A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation
Heydari, M H | Hooshmandasl, M R | Cattani, CProceedings - Mathematical Sciences, Vol. 128 (2018), Iss. 2
https://doi.org/10.1007/s12044-018-0393-4 [Citations: 20] -
FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION
Journal of Applied Analysis & Computation, Vol. 8 (2018), Iss. 1 P.229
https://doi.org/10.11948/2018.229 [Citations: 1] -
Wavelets Galerkin Method for the Fractional Subdiffusion Equation
Heydari, M. H.
Journal of Computational and Nonlinear Dynamics, Vol. 11 (2016), Iss. 6
https://doi.org/10.1115/1.4034391 [Citations: 7] -
A Comparative Study of Integer and Noninteger Order Wavelets for Fractional Nonlinear Fredholm Integro-Differential Equations
Mohammadi, F. | Tenreiro Machado, J. A.Journal of Computational and Nonlinear Dynamics, Vol. 13 (2018), Iss. 8
https://doi.org/10.1115/1.4040343 [Citations: 1] -
Approximation of one and two dimensional nonlinear generalized Benjamin-Bona-Mahony Burgers' equation with local fractional derivative
Ghafoor, Abdul | Hussain, Manzoor | Ahmad, Danyal | Arifeen, Shams UlComputers & Mathematics with Applications, Vol. 172 (2024), Iss. P.125
https://doi.org/10.1016/j.camwa.2024.07.032 [Citations: 0] -
Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel
Hosseininia, M. | Heydari, M.H.Chaos, Solitons & Fractals, Vol. 127 (2019), Iss. P.400
https://doi.org/10.1016/j.chaos.2019.07.017 [Citations: 37] -
Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
Hooshmandasl, M. R. | Heydari, M. H. | Cattani, C.The European Physical Journal Plus, Vol. 131 (2016), Iss. 8
https://doi.org/10.1140/epjp/i2016-16268-2 [Citations: 37] -
Numerical solution of time-fractional telegraph equation by using a new class of orthogonal polynomials
Mohammadi, Fakhrodin | Hassani, HosseinBoletim da Sociedade Paranaense de Matemática, Vol. 40 (2022), Iss. P.1
https://doi.org/10.5269/bspm.44010 [Citations: 2] -
A new Wavelet Method for Variable‐Order Fractional Optimal Control Problems
Heydari, Mohammad Hossein | Avazzadeh, ZakiehAsian Journal of Control, Vol. 20 (2018), Iss. 5 P.1804
https://doi.org/10.1002/asjc.1687 [Citations: 65] -
An efficient algorithm for solving the conformable time-space fractional telegraph equations
Saad, Abdelkebir | Brahim, NouiriMoroccan Journal of Pure and Applied Analysis, Vol. 7 (2021), Iss. 3 P.413
https://doi.org/10.2478/mjpaa-2021-0028 [Citations: 4] -
Wavelets Galerkin method for solving stochastic heat equation
Heydari, M.H. | Hooshmandasl, M.R. | Barid Loghmani, Gh. | Cattani, C.International Journal of Computer Mathematics, Vol. 93 (2016), Iss. 9 P.1579
https://doi.org/10.1080/00207160.2015.1067311 [Citations: 37] -
On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation
Ali, Ajmal | Ali, Norhashidah Hj. Mohd.Advances in Difference Equations, Vol. 2019 (2019), Iss. 1
https://doi.org/10.1186/s13662-019-2238-6 [Citations: 8] -
A wavelet approach for the variable-order fractional model of ultra-short pulsed laser therapy
Roohi, R. | Hosseininia, M. | Heydari, M. H.Engineering with Computers, Vol. 38 (2022), Iss. S3 P.2229
https://doi.org/10.1007/s00366-021-01367-x [Citations: 4] -
Convergence theorem for the Haar wavelet based discretization method
Majak, J. | Shvartsman, B.S. | Kirs, M. | Pohlak, M. | Herranen, H.Composite Structures, Vol. 126 (2015), Iss. P.227
https://doi.org/10.1016/j.compstruct.2015.02.050 [Citations: 134] -
Numerical approach for solving variable-order space–time fractional telegraph equation using transcendental Bernstein series
Hassani, H. | Avazzadeh, Z. | Machado, J. A. TenreiroEngineering with Computers, Vol. 36 (2020), Iss. 3 P.867
https://doi.org/10.1007/s00366-019-00736-x [Citations: 53] -
Explicit group iterative methods for the solution of two-dimensional time-fractional telegraph equation
Ali, Ajmal | Ali, Norhashidah Hj Mohd.THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), (2019), P.030006
https://doi.org/10.1063/1.5121043 [Citations: 2] -
Numerical analysis of two new finite difference methods for time-fractional telegraph equation
Yang, Xiaozhong | Liu, XinlongDiscrete & Continuous Dynamical Systems - B, Vol. 26 (2021), Iss. 7 P.3921
https://doi.org/10.3934/dcdsb.2020269 [Citations: 0] -
Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel
Hosseininia, M. | Heydari, M.H.Chaos, Solitons & Fractals, Vol. 127 (2019), Iss. P.389
https://doi.org/10.1016/j.chaos.2019.07.015 [Citations: 41] -
A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation
Hosseininia, Masoumeh | Heydari, Mohammad Hossein | Cattani, CarloDiscrete & Continuous Dynamical Systems - S, Vol. 14 (2021), Iss. 7 P.2273
https://doi.org/10.3934/dcdss.2020295 [Citations: 4] -
An efficient fractional-order wavelet method for fractional Volterra integro-differential equations
Mohammadi, Fakhrodin
International Journal of Computer Mathematics, Vol. 95 (2018), Iss. 12 P.2396
https://doi.org/10.1080/00207160.2017.1396454 [Citations: 2] -
Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations
Heydari, M. H. | Hooshmandasl, M. R. | Shakiba, A. | Cattani, C.Nonlinear Dynamics, Vol. 85 (2016), Iss. 2 P.1185
https://doi.org/10.1007/s11071-016-2753-x [Citations: 39] -
An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation
Yang, Xuehua | Qiu, Wenlin | Zhang, Haixiang | Tang, LiangComputers & Mathematics with Applications, Vol. 102 (2021), Iss. P.233
https://doi.org/10.1016/j.camwa.2021.10.021 [Citations: 20]