Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation

Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation

Year:    2014

Author:    M. H. Heydari, M. R. Hooshmandasl, F. Mohammadi

Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 2 : pp. 247–260

Abstract

In this paper, we develop an accurate and efficient Legendre wavelets method for numerical solution of the well known time-fractional telegraph equation. In the proposed method we have employed both of the operational matrices of fractional integration and differentiation to get numerical solution of the time-telegraph equation. The power of this manageable method is confirmed. Moreover, the use of Legendre wavelet is found to be accurate, simple and fast.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.12-m12132

Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 2 : pp. 247–260

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Telegraph equation Legendre wavelets fractional calculus Caputo derivative.

Author Details

M. H. Heydari

M. R. Hooshmandasl

F. Mohammadi

  1. On the accuracy of the Haar wavelet discretization method

    Majak, J. | Shvartsman, B. | Karjust, K. | Mikola, M. | Haavajõe, A. | Pohlak, M.

    Composites Part B: Engineering, Vol. 80 (2015), Iss. P.321

    https://doi.org/10.1016/j.compositesb.2015.06.008 [Citations: 73]
  2. A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation

    Shekari, Younes | Tayebi, Ali | Heydari, Mohammad Hossein

    Computer Methods in Applied Mechanics and Engineering, Vol. 350 (2019), Iss. P.154

    https://doi.org/10.1016/j.cma.2019.02.035 [Citations: 44]
  3. Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method

    Sweilam, N. H. | Nagy, A. M. | El-Sayed, Adel A.

    Mediterranean Journal of Mathematics, Vol. 13 (2016), Iss. 6 P.5119

    https://doi.org/10.1007/s00009-016-0796-3 [Citations: 29]
  4. Wavelets method for the time fractional diffusion-wave equation

    Heydari, M.H. | Hooshmandasl, M.R. | Maalek Ghaini, F.M. | Cattani, C.

    Physics Letters A, Vol. 379 (2015), Iss. 3 P.71

    https://doi.org/10.1016/j.physleta.2014.11.012 [Citations: 92]
  5. An efficient wavelet-based approximation method for the coupled nonlinear fractal–fractional 2D Schrödinger equations

    Heydari, M. H. | Hosseininia, M. | Avazzadeh, Z.

    Engineering with Computers, Vol. 37 (2021), Iss. 3 P.2129

    https://doi.org/10.1007/s00366-020-00934-y [Citations: 10]
  6. A High Order Numerical Scheme for Time-Fractional Telegraph Equation Via Cubic Spline in Tension

    Chawla, Reetika | Kumar, Devendra

    Differential Equations and Dynamical Systems, Vol. (2024), Iss.

    https://doi.org/10.1007/s12591-024-00678-x [Citations: 0]
  7. A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions

    Roohi, R. | Heydari, M. H. | Aslami, M. | Mahmoudi, M. R.

    The European Physical Journal Plus, Vol. 133 (2018), Iss. 10

    https://doi.org/10.1140/epjp/i2018-12204-x [Citations: 39]
  8. A wavelet approach for the multi-term time fractional diffusion-wave equation

    Soltani Sarvestani, F. | Heydari, M. H. | Niknam, A. | Avazzadeh, Z.

    International Journal of Computer Mathematics, Vol. 96 (2019), Iss. 3 P.640

    https://doi.org/10.1080/00207160.2018.1458097 [Citations: 26]
  9. Legendre Wavelets Direct Method for the Numerical Solution of Time-Fractional Order Telegraph Equations

    Xu, Xiaoyong | Xu, Da

    Mediterranean Journal of Mathematics, Vol. 15 (2018), Iss. 1

    https://doi.org/10.1007/s00009-018-1074-3 [Citations: 15]
  10. Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions

    Qiao, Leijie | Qiu, Wenlin | Xu, Da

    Mathematics and Computers in Simulation, Vol. 205 (2023), Iss. P.205

    https://doi.org/10.1016/j.matcom.2022.10.001 [Citations: 15]
  11. Legendre wavelets optimization method for variable-order fractional Poisson equation

    Heydari, Mohammad Hossein | Avazzadeh, Zakieh

    Chaos, Solitons & Fractals, Vol. 112 (2018), Iss. P.180

    https://doi.org/10.1016/j.chaos.2018.04.028 [Citations: 51]
  12. Efficient solutions to time-fractional telegraph equations with Chebyshev neural networks

    Ali, Amina Hassan | Senu, Norazak | Ahmadian, Ali

    Physica Scripta, Vol. 99 (2024), Iss. 11 P.115210

    https://doi.org/10.1088/1402-4896/ad7c93 [Citations: 0]
  13. Numerical solution of time-fractional telegraph equations using wavelet transform

    Mulimani, Mallanagoud | S, Kumbinarasaiah

    International Journal of Dynamics and Control, Vol. 12 (2024), Iss. 7 P.2166

    https://doi.org/10.1007/s40435-023-01318-y [Citations: 3]
  14. A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation

    Heydari, Mohammad Hossein | Avazzadeh, Zakieh | Haromi, Malih Farzi

    Applied Mathematics and Computation, Vol. 341 (2019), Iss. P.215

    https://doi.org/10.1016/j.amc.2018.08.034 [Citations: 28]
  15. Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels⋆

    Avazzadeh, Z. | Heydari, M. H. | Cattani, C.

    The European Physical Journal Plus, Vol. 134 (2019), Iss. 7

    https://doi.org/10.1140/epjp/i2019-12743-6 [Citations: 18]
  16. A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation

    Hosseininia, M. | Heydari, M.H. | Maalek Ghaini, F.M. | Avazzadeh, Z.

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 12 P.3713

    https://doi.org/10.1016/j.camwa.2019.06.008 [Citations: 33]
  17. Fractional Chebyshev deep neural network (FCDNN) for solving differential models

    Hajimohammadi, Zeinab | Baharifard, Fatemeh | Ghodsi, Ali | Parand, Kourosh

    Chaos, Solitons & Fractals, Vol. 153 (2021), Iss. P.111530

    https://doi.org/10.1016/j.chaos.2021.111530 [Citations: 13]
  18. A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation

    Heydari, M H | Hooshmandasl, M R | Cattani, C

    Proceedings - Mathematical Sciences, Vol. 128 (2018), Iss. 2

    https://doi.org/10.1007/s12044-018-0393-4 [Citations: 20]
  19. FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION

    Journal of Applied Analysis & Computation, Vol. 8 (2018), Iss. 1 P.229

    https://doi.org/10.11948/2018.229 [Citations: 1]
  20. Wavelets Galerkin Method for the Fractional Subdiffusion Equation

    Heydari, M. H.

    Journal of Computational and Nonlinear Dynamics, Vol. 11 (2016), Iss. 6

    https://doi.org/10.1115/1.4034391 [Citations: 7]
  21. A Comparative Study of Integer and Noninteger Order Wavelets for Fractional Nonlinear Fredholm Integro-Differential Equations

    Mohammadi, F. | Tenreiro Machado, J. A.

    Journal of Computational and Nonlinear Dynamics, Vol. 13 (2018), Iss. 8

    https://doi.org/10.1115/1.4040343 [Citations: 1]
  22. Approximation of one and two dimensional nonlinear generalized Benjamin-Bona-Mahony Burgers' equation with local fractional derivative

    Ghafoor, Abdul | Hussain, Manzoor | Ahmad, Danyal | Arifeen, Shams Ul

    Computers & Mathematics with Applications, Vol. 172 (2024), Iss. P.125

    https://doi.org/10.1016/j.camwa.2024.07.032 [Citations: 0]
  23. Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel

    Hosseininia, M. | Heydari, M.H.

    Chaos, Solitons & Fractals, Vol. 127 (2019), Iss. P.400

    https://doi.org/10.1016/j.chaos.2019.07.017 [Citations: 37]
  24. Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions

    Hooshmandasl, M. R. | Heydari, M. H. | Cattani, C.

    The European Physical Journal Plus, Vol. 131 (2016), Iss. 8

    https://doi.org/10.1140/epjp/i2016-16268-2 [Citations: 37]
  25. Numerical solution of time-fractional telegraph equation by using a new class of orthogonal polynomials

    Mohammadi, Fakhrodin | Hassani, Hossein

    Boletim da Sociedade Paranaense de Matemática, Vol. 40 (2022), Iss. P.1

    https://doi.org/10.5269/bspm.44010 [Citations: 2]
  26. A new Wavelet Method for Variable‐Order Fractional Optimal Control Problems

    Heydari, Mohammad Hossein | Avazzadeh, Zakieh

    Asian Journal of Control, Vol. 20 (2018), Iss. 5 P.1804

    https://doi.org/10.1002/asjc.1687 [Citations: 65]
  27. An efficient algorithm for solving the conformable time-space fractional telegraph equations

    Saad, Abdelkebir | Brahim, Nouiri

    Moroccan Journal of Pure and Applied Analysis, Vol. 7 (2021), Iss. 3 P.413

    https://doi.org/10.2478/mjpaa-2021-0028 [Citations: 4]
  28. Wavelets Galerkin method for solving stochastic heat equation

    Heydari, M.H. | Hooshmandasl, M.R. | Barid Loghmani, Gh. | Cattani, C.

    International Journal of Computer Mathematics, Vol. 93 (2016), Iss. 9 P.1579

    https://doi.org/10.1080/00207160.2015.1067311 [Citations: 37]
  29. On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation

    Ali, Ajmal | Ali, Norhashidah Hj. Mohd.

    Advances in Difference Equations, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1186/s13662-019-2238-6 [Citations: 8]
  30. A wavelet approach for the variable-order fractional model of ultra-short pulsed laser therapy

    Roohi, R. | Hosseininia, M. | Heydari, M. H.

    Engineering with Computers, Vol. 38 (2022), Iss. S3 P.2229

    https://doi.org/10.1007/s00366-021-01367-x [Citations: 4]
  31. Convergence theorem for the Haar wavelet based discretization method

    Majak, J. | Shvartsman, B.S. | Kirs, M. | Pohlak, M. | Herranen, H.

    Composite Structures, Vol. 126 (2015), Iss. P.227

    https://doi.org/10.1016/j.compstruct.2015.02.050 [Citations: 134]
  32. Numerical approach for solving variable-order space–time fractional telegraph equation using transcendental Bernstein series

    Hassani, H. | Avazzadeh, Z. | Machado, J. A. Tenreiro

    Engineering with Computers, Vol. 36 (2020), Iss. 3 P.867

    https://doi.org/10.1007/s00366-019-00736-x [Citations: 54]
  33. Explicit group iterative methods for the solution of two-dimensional time-fractional telegraph equation

    Ali, Ajmal | Ali, Norhashidah Hj Mohd.

    THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), (2019), P.030006

    https://doi.org/10.1063/1.5121043 [Citations: 2]
  34. Numerical analysis of two new finite difference methods for time-fractional telegraph equation

    Yang, Xiaozhong | Liu, Xinlong

    Discrete & Continuous Dynamical Systems - B, Vol. 26 (2021), Iss. 7 P.3921

    https://doi.org/10.3934/dcdsb.2020269 [Citations: 0]
  35. Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel

    Hosseininia, M. | Heydari, M.H.

    Chaos, Solitons & Fractals, Vol. 127 (2019), Iss. P.389

    https://doi.org/10.1016/j.chaos.2019.07.015 [Citations: 41]
  36. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation

    Hosseininia, Masoumeh | Heydari, Mohammad Hossein | Cattani, Carlo

    Discrete & Continuous Dynamical Systems - S, Vol. 14 (2021), Iss. 7 P.2273

    https://doi.org/10.3934/dcdss.2020295 [Citations: 4]
  37. An efficient fractional-order wavelet method for fractional Volterra integro-differential equations

    Mohammadi, Fakhrodin

    International Journal of Computer Mathematics, Vol. 95 (2018), Iss. 12 P.2396

    https://doi.org/10.1080/00207160.2017.1396454 [Citations: 2]
  38. Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations

    Heydari, M. H. | Hooshmandasl, M. R. | Shakiba, A. | Cattani, C.

    Nonlinear Dynamics, Vol. 85 (2016), Iss. 2 P.1185

    https://doi.org/10.1007/s11071-016-2753-x [Citations: 39]
  39. An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation

    Yang, Xuehua | Qiu, Wenlin | Zhang, Haixiang | Tang, Liang

    Computers & Mathematics with Applications, Vol. 102 (2021), Iss. P.233

    https://doi.org/10.1016/j.camwa.2021.10.021 [Citations: 20]