An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

Year:    2013

Author:    Ying Yang, Benzhuo Lu

Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 1 : pp. 113–130

Abstract

Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodiffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. Several numerical examples including biomolecular problems are shown to support our analysis.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.11-m11184

Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 1 : pp. 113–130

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:    Poisson-Nernst-Planck equations finite element method error bounds.

Author Details

Ying Yang

Benzhuo Lu

  1. Superconvergent gradient recovery for nonlinear Poisson-Nernst-Planck equations with applications to the ion channel problem

    Yang, Ying | Tang, Ming | Liu, Chun | Lu, Benzhuo | Zhong, Liuqiang

    Advances in Computational Mathematics, Vol. 46 (2020), Iss. 6

    https://doi.org/10.1007/s10444-020-09819-6 [Citations: 3]
  2. Error analysis of mixed finite element method for Poisson‐Nernst‐Planck system

    He, Mingyan | Sun, Pengtao

    Numerical Methods for Partial Differential Equations, Vol. 33 (2017), Iss. 6 P.1924

    https://doi.org/10.1002/num.22170 [Citations: 13]
  3. Local averaging type a posteriori error estimates for the nonlinear steady-state Poisson–Nernst–Planck equations

    Yang, Ying | Shen, Ruigang | Fang, Mingjuan | Shu, Shi

    Journal of Computational and Applied Mathematics, Vol. 404 (2022), Iss. P.113874

    https://doi.org/10.1016/j.cam.2021.113874 [Citations: 2]
  4. A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations

    Shen, Ruigang | Shu, Shi | Yang, Ying | Lu, Benzhuo

    Numerical Algorithms, Vol. 83 (2020), Iss. 4 P.1613

    https://doi.org/10.1007/s11075-019-00744-4 [Citations: 9]
  5. A weak Galerkin finite element method for time-dependent Poisson–Nernst–Planck equations

    Ji, Guanghua | Zhu, Wanwan

    Journal of Computational and Applied Mathematics, Vol. 416 (2022), Iss. P.114563

    https://doi.org/10.1016/j.cam.2022.114563 [Citations: 5]
  6. Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson–Nernst–Planck Equations

    Zhu, Wanwan | Yang, Ying | Ji, Guanghua | Lu, Benzhuo

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 1

    https://doi.org/10.1007/s10915-021-01702-w [Citations: 3]
  7. Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling

    He, Mingyan | Sun, Pengtao

    Journal of Computational and Applied Mathematics, Vol. 341 (2018), Iss. P.61

    https://doi.org/10.1016/j.cam.2018.04.003 [Citations: 18]
  8. Superconvergence analysis of finite element method for Poisson–Nernst–Planck equations

    Shi, Dongyang | Yang, Huaijun

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 3 P.1206

    https://doi.org/10.1002/num.22346 [Citations: 12]
  9. A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes

    Liu, Yang | Shu, Shi | Wei, Huayi | Yang, Ying

    Computers & Mathematics with Applications, Vol. 102 (2021), Iss. P.95

    https://doi.org/10.1016/j.camwa.2021.10.002 [Citations: 3]
  10. Error analysis of finite element method for Poisson–Nernst–Planck equations

    Sun, Yuzhou | Sun, Pengtao | Zheng, Bin | Lin, Guang

    Journal of Computational and Applied Mathematics, Vol. 301 (2016), Iss. P.28

    https://doi.org/10.1016/j.cam.2016.01.028 [Citations: 44]
  11. Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation

    Dione, Ibrahima | Deteix, Jean | Briffard, Thomas | Chamberland, Eric | Doyon, Nicolas | Chacron, Maurice J.

    PLOS ONE, Vol. 11 (2016), Iss. 8 P.e0161318

    https://doi.org/10.1371/journal.pone.0161318 [Citations: 7]
  12. Reference Module in Life Sciences

    A Review of Mathematical Modeling, Simulation and Analysis of Membrane Channel Charge Transport ☆

    Chen, Duan | Wei, Guo-Wei

    2017

    https://doi.org/10.1016/B978-0-12-809633-8.12044-8 [Citations: 3]
  13. Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations

    Yang, Huaijun | Li, Meng

    Advances in Computational Mathematics, Vol. 50 (2024), Iss. 3

    https://doi.org/10.1007/s10444-024-10145-4 [Citations: 1]
  14. Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations

    He, Mingyan | Sun, Pengtao

    Journal of Scientific Computing, Vol. 87 (2021), Iss. 3

    https://doi.org/10.1007/s10915-021-01478-z [Citations: 9]