Natural Convection in a Concentric Annulus: A Lattice Boltzmann Method Study with Boundary Condition-Enforced Immersed Boundary Method

Natural Convection in a Concentric Annulus: A Lattice Boltzmann Method Study with Boundary Condition-Enforced Immersed Boundary Method

Year:    2013

Author:    Yang Hu, Xiao-Dong Niu, Shi Shu, Haizhuan Yuan, Mingjun Li

Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 3 : pp. 321–336

Abstract

In this paper, a boundary condition-enforced IBM is introduced into the LBM in order to satisfy the non-slip and temperature boundary conditions, and natural convections in a concentric isothermal annulus between a square outer cylinder and a circular inner cylinder are simulated. The obtained results show that the boundary condition-enforced method gives a better solution for the flow field and the complicated physics of the natural convections in the selected case is correctly captured. The calculated average Nusselt numbers agree well with the previous studies.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.12-m12116

Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 3 : pp. 321–336

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Lattice Boltzmann method boundary condition-enforced immersed boundary method natural convection.

Author Details

Yang Hu

Xiao-Dong Niu

Shi Shu

Haizhuan Yuan

Mingjun Li

  1. Study of multiple steady solutions for the 2D natural convection in a concentric horizontal annulus with a constant heat flux wall using immersed boundary-lattice Boltzmann method

    Hu, Yang | Li, Decai | Shu, Shi | Niu, Xiaodong

    International Journal of Heat and Mass Transfer, Vol. 81 (2015), Iss. P.591

    https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.050 [Citations: 61]
  2. Effects of temperature-dependent properties on natural convection of nanofluids in a partially heated cubic enclosure

    Wang, Lei | Shi, Baochang | Chai, Zhenhua

    Applied Thermal Engineering, Vol. 128 (2018), Iss. P.204

    https://doi.org/10.1016/j.applthermaleng.2017.09.006 [Citations: 29]
  3. Thermal lattice Boltzmann flux solver and its application for simulation of incompressible thermal flows

    Wang, Y. | Shu, C. | Teo, C.J.

    Computers & Fluids, Vol. 94 (2014), Iss. P.98

    https://doi.org/10.1016/j.compfluid.2014.02.006 [Citations: 84]
  4. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution

    Wang, Lei | Huang, Changsheng | Yang, Xuguang | Chai, Zhenhua | Shi, Baochang

    International Journal of Heat and Mass Transfer, Vol. 128 (2019), Iss. P.688

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.007 [Citations: 67]
  5. Immersed boundary method simulation of natural convection over fixed and oscillating cylinders in square enclosure

    Kumar, Manish | Roy, Somnath

    International Journal of Heat and Fluid Flow, Vol. 61 (2016), Iss. P.407

    https://doi.org/10.1016/j.ijheatfluidflow.2016.06.002 [Citations: 11]
  6. Mesoscopic approach for steady‐state free convection in a diamond array

    Chaabane, Raoudha | Askri, Faouzi | Jemni, Abdelmajid

    Heat Transfer—Asian Research, Vol. 48 (2019), Iss. 3 P.896

    https://doi.org/10.1002/htj.21413 [Citations: 4]
  7. Lattice Boltzmann Simulation of Natural Convection in an Annulus between a Hexagonal Cylinder and a Square Enclosure

    El Moutaouakil, L. | Zrikem, Z. | Abdelbaki, A. | Pagano, Arturo

    Mathematical Problems in Engineering, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1155/2017/3834170 [Citations: 16]
  8. A fractional step axisymmetric lattice Boltzmann flux solver for incompressible swirling and rotating flows

    Wang, Y. | Shu, C. | Teo, C.J.

    Computers & Fluids, Vol. 96 (2014), Iss. P.204

    https://doi.org/10.1016/j.compfluid.2014.03.006 [Citations: 30]
  9. Lattice-Boltzmann Modeling of Natural Convection Between a Square Outer Cylinder and an Inner Isosceles Triangular Heating Body

    El Abdallaoui, M. | Hasnaoui, M. | Amahmid, A.

    Numerical Heat Transfer, Part A: Applications, Vol. 66 (2014), Iss. 9 P.1076

    https://doi.org/10.1080/10407782.2014.894398 [Citations: 22]
  10. Numerical study of nanofluid natural convection in a square cavity with a hot obstacle using lattice Boltzmann method

    Rahmati, A.R. | Tahery, A.A.

    Alexandria Engineering Journal, Vol. 57 (2018), Iss. 3 P.1271

    https://doi.org/10.1016/j.aej.2017.03.030 [Citations: 38]
  11. Full Eulerian lattice Boltzmann model for conjugate heat transfer

    Hu, Yang | Li, Decai | Shu, Shi | Niu, Xiaodong

    Physical Review E, Vol. 92 (2015), Iss. 6

    https://doi.org/10.1103/PhysRevE.92.063305 [Citations: 44]
  12. On the thermal boundary conditions of particulate-fluid modeling

    Zhang, Hao | Shao, Yingjuan | Li, Kaixi | Hu, Yang

    Powder Technology, Vol. 314 (2017), Iss. P.315

    https://doi.org/10.1016/j.powtec.2016.08.038 [Citations: 7]
  13. An improved momentum exchanged-based immersed boundary–lattice Boltzmann method by using an iterative technique

    Hu, Yang | Yuan, Haizhuan | Shu, Shi | Niu, Xiaodong | Li, Mingjun

    Computers & Mathematics with Applications, Vol. 68 (2014), Iss. 3 P.140

    https://doi.org/10.1016/j.camwa.2014.05.013 [Citations: 64]
  14. Simulation of Natural Convection in a Concentric Hexagonal Annulus Using the Lattice Boltzmann Method Combined with the Smoothed Profile Method

    Alapati, Suresh

    Mathematics, Vol. 8 (2020), Iss. 6 P.1043

    https://doi.org/10.3390/math8061043 [Citations: 12]
  15. Particulate Immersed Boundary Method for complex fluid–particle interaction problems with heat transfer

    Zhang, Hao | Yuan, Haizhuan | Trias, F. Xavier | Yu, Aibing | Tan, Yuanqiang | Oliva, Assensi

    Computers & Mathematics with Applications, Vol. 71 (2016), Iss. 1 P.391

    https://doi.org/10.1016/j.camwa.2015.12.003 [Citations: 17]
  16. A curvilinear lattice Boltzmann scheme for thermal flows

    Reyes Barraza, J.A. | Deiterding, R.

    Mathematics and Computers in Simulation, Vol. 202 (2022), Iss. P.405

    https://doi.org/10.1016/j.matcom.2022.06.002 [Citations: 1]
  17. Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method

    Alapati, Suresh | Che, Wooseong | Rao, Sunkara Srinivasa | Phan, Giang T. T.

    Axioms, Vol. 12 (2023), Iss. 11 P.1011

    https://doi.org/10.3390/axioms12111011 [Citations: 0]
  18. An efficient smoothed profile-lattice Boltzmann method for the simulation of forced and natural convection flows in complex geometries

    Hu, Yang | Li, Decai | Shu, Shi | Niu, Xiaodong

    International Communications in Heat and Mass Transfer, Vol. 68 (2015), Iss. P.188

    https://doi.org/10.1016/j.icheatmasstransfer.2015.05.030 [Citations: 30]
  19. Natural convection in a nanofluid-filled eccentric annulus with constant heat flux wall: A lattice Boltzmann study with immersed boundary method

    Hu, Yang | Li, Decai | Shu, Shi | Niu, Xiaodong

    International Communications in Heat and Mass Transfer, Vol. 86 (2017), Iss. P.262

    https://doi.org/10.1016/j.icheatmasstransfer.2017.05.015 [Citations: 20]
  20. An Efficient Immersed Boundary-Lattice Boltzmann Method for the Simulation of Thermal Flow Problems

    Hu, Yang | Li, Decai | Shu, Shi | Niu, Xiaodong

    Communications in Computational Physics, Vol. 20 (2016), Iss. 5 P.1210

    https://doi.org/10.4208/cicp.090815.170316a [Citations: 32]
  21. Simulation of steady fluid–solid conjugate heat transfer problems via immersed boundary-lattice Boltzmann method

    Hu, Yang | Li, Decai | Shu, Shi | Niu, Xiaodong

    Computers & Mathematics with Applications, Vol. 70 (2015), Iss. 9 P.2227

    https://doi.org/10.1016/j.camwa.2015.08.024 [Citations: 37]
  22. Lattice Boltzmann Simulation of Magnetic Field Effect on Natural Convection of Power-Law Nanofluids in Rectangular Enclosures

    Wang, Lei | Chai, Zhenhua | Shi, Baochang

    Advances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 5 P.1094

    https://doi.org/10.4208/aamm.OA-2016-0066 [Citations: 11]
  23. PIBM: Particulate immersed boundary method for fluid–particle interaction problems

    Zhang, Hao | Trias, F. Xavier | Oliva, Assensi | Yang, Dongmin | Tan, Yuanqiang | Shu, Shi | Sheng, Yong

    Powder Technology, Vol. 272 (2015), Iss. P.1

    https://doi.org/10.1016/j.powtec.2014.11.025 [Citations: 29]
  24. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array

    Chaabane, Raoudha | Kolsi, Lioua | Jemni, Abdelmajid | D’Orazio, Annunziata

    International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 24 (2023), Iss. 6 P.2163

    https://doi.org/10.1515/ijnsns-2021-0073 [Citations: 3]
  25. Numerical simulation of thermal flow of power-law fluids using lattice Boltzmann method on non-orthogonal grids

    Dong, Bo | Zhou, Xun | Zhang, Yajin | Chen, Cong | Li, Weizhong

    International Journal of Heat and Mass Transfer, Vol. 126 (2018), Iss. P.293

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.003 [Citations: 16]