Solutions of Fractional Partial Differential Equations of Quantum Mechanics

Solutions of Fractional Partial Differential Equations of Quantum Mechanics

Year:    2013

Author:    S. D. Purohit

Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 5 : pp. 639–651

Abstract

The aim of this article is to investigate the solutions of generalized fractional partial differential equations involving Hilfer time fractional derivative and the space fractional generalized Laplace operators, occurring in quantum mechanics. The solutions of these equations are obtained by employing the joint Laplace and Fourier transforms, in terms of the Fox's $H$-function. Several special cases as solutions of one dimensional non-homogeneous fractional equations occurring in the quantum mechanics are presented. The results given earlier by Saxena et al. [Fract. Calc. Appl. Anal., 13(2) (2010), pp. 177-190] and Purohit and Kalla [J. Phys. A Math. Theor., 44 (4) (2011), 045202] follow as special cases of our findings.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.12-m1298

Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 5 : pp. 639–651

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords:    Fractional Schrödinger equation Laplace transform Fourier transform Hilfer fractional derivative Fox's $H$-function and Quantum mechanics.

Author Details

S. D. Purohit

  1. Generalized fractional integrals of product of twoH-functions and a general class of polynomials

    Baleanu, D. | Kumar, Dinesh | Purohit, S.D.

    International Journal of Computer Mathematics, Vol. 93 (2016), Iss. 8 P.1320

    https://doi.org/10.1080/00207160.2015.1045886 [Citations: 20]
  2. The Analytical Analysis of Time-Fractional Fornberg–Whitham Equations

    Alderremy, A. A. | Khan, Hassan | Shah, Rasool | Aly, Shaban | Baleanu, Dumitru

    Mathematics, Vol. 8 (2020), Iss. 6 P.987

    https://doi.org/10.3390/math8060987 [Citations: 23]
  3. On the solutions for generalised multiorder fractional partial differential equations arising in physics

    Purohit, Sunil Dutt | Baleanu, Dumitru | Jangid, Kamlesh

    Mathematical Methods in the Applied Sciences, Vol. 46 (2023), Iss. 7 P.8139

    https://doi.org/10.1002/mma.7431 [Citations: 3]
  4. Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain

    Pei, Ke | Wang, Guotao | Sun, Yanyan

    Applied Mathematics and Computation, Vol. 312 (2017), Iss. P.158

    https://doi.org/10.1016/j.amc.2017.05.056 [Citations: 45]
  5. Solving fractional partial differential equations by using Bernstein polynomials with artificial neural networks

    Mohammad, Susan H. | Al-Rawi, Ekhlass S.

    PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, (2023), P.060020

    https://doi.org/10.1063/5.0157008 [Citations: 1]
  6. On Euler type integrals involving extended Mittag-Leffler functions

    Mittal, Ekta | Joshi, Sunil | Pandey, Rupakshi Mishra

    Boletim da Sociedade Paranaense de Matemática, Vol. 38 (2018), Iss. 2 P.123

    https://doi.org/10.5269/bspm.v38i2.34829 [Citations: 1]
  7. A second-order parareal algorithm for fractional PDEs

    Wu, Shu-Lin

    Journal of Computational Physics, Vol. 307 (2016), Iss. P.280

    https://doi.org/10.1016/j.jcp.2015.12.007 [Citations: 3]
  8. On fractional kinetic equationsk-Struve functions based solutions

    Nisar, Kottakkaran Sooppy | Mondal, Saiful Rahman | Belgacem, Fethi Bin Muhammad

    Alexandria Engineering Journal, Vol. 57 (2018), Iss. 4 P.3249

    https://doi.org/10.1016/j.aej.2018.01.010 [Citations: 3]
  9. Fractional calculus pertaining to multivariable Aleph-function

    Kumar, Dinesh | Ayant, Frederic

    Boletim da Sociedade Paranaense de Matemática, Vol. 40 (2022), Iss. P.1

    https://doi.org/10.5269/bspm.42941 [Citations: 0]
  10. Numerical Study of Schrödinger Equation Using Differential Quadrature Method

    Bhatia, Rachna | Mittal, R. C.

    International Journal of Applied and Computational Mathematics, Vol. 4 (2018), Iss. 1

    https://doi.org/10.1007/s40819-017-0470-x [Citations: 1]
  11. Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel

    Yépez-Martínez, H. | Gómez-Aguilar, J.F. | Atangana, Abdon | Mophou, Gisèle | Hristov, Jordan | Hammouch, Zakia

    Mathematical Modelling of Natural Phenomena, Vol. 13 (2018), Iss. 1 P.13

    https://doi.org/10.1051/mmnp/2018002 [Citations: 17]
  12. The composition of extended Mittag-Leffler functions with pathway integral operator

    Rahman, G | Ghaffar, A | Mubeen, S | Arshad, M | Khan, SU

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-017-1237-8 [Citations: 5]
  13. Some generating functions and properties of extended second Appell function

    Parmar, Rakesh K. | Purohit, Sunil Dutt

    Boletim da Sociedade Paranaense de Matemática, Vol. 37 (2017), Iss. 1 P.169

    https://doi.org/10.5269/bspm.v37i1.30725 [Citations: 0]
  14. COMPARISON PRINCIPLES FOR HADAMARD-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS

    YIN, CHUNTAO | MA, LI | LI, CHANGPIN

    Fractals, Vol. 26 (2018), Iss. 04 P.1850056

    https://doi.org/10.1142/S0218348X18500561 [Citations: 9]
  15. Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions

    Baleanu, D. | Agarwal, P. | Purohit, S. D. | Atangana, A. | Noutchie, S. C. O. | Ray, S. S. | Secer, A.

    The Scientific World Journal, Vol. 2013 (2013), Iss. 1

    https://doi.org/10.1155/2013/567132 [Citations: 6]
  16. On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function

    Agarwal, P. | Chand, M. | Baleanu, D. | O’Regan, D. | Jain, Shilpi

    Advances in Difference Equations, Vol. 2018 (2018), Iss. 1

    https://doi.org/10.1186/s13662-018-1694-8 [Citations: 34]
  17. Wavelet methods for fractional electrical circuit equations

    Tural-Polat, Sadiye Nergis | Dincel, Arzu Turan

    Physica Scripta, Vol. 98 (2023), Iss. 11 P.115203

    https://doi.org/10.1088/1402-4896/acfacc [Citations: 1]
  18. Fractional operators with generalized Mittag-Leffler k-function

    Mubeen, Shahid | Safdar Ali, Rana

    Advances in Difference Equations, Vol. 2019 (2019), Iss. 1

    https://doi.org/10.1186/s13662-019-2458-9 [Citations: 6]
  19. Analysis of semi-analytical method for solving fuzzy fractional differential equations with strongly nonlinearity under caputo derivative sense

    Hashim, Dulfikar Jawad | Jameel, Ali Fareed | Ying, Teh Yuan

    THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE (SISC2021): College of Science, Al-Nahrain University, (2023), P.020010

    https://doi.org/10.1063/5.0118685 [Citations: 0]
  20. Numerical Solutions for Space Fractional Schrödinger Equation Through Semiclassical Approximation

    Gao, Yijin | Sacks, Paul | Luo, Songting

    Communications on Applied Mathematics and Computation, Vol. (2024), Iss.

    https://doi.org/10.1007/s42967-024-00384-z [Citations: 0]
  21. RETRACTED ARTICLE: Research on statistical algorithm optimization of fractional differential equations of quantum mechanics in ecological compensation

    Zhao, Wei | Leng, Kaijun | Chen, Jinbo | Jiao, Yuanze | Zhao, Qiong

    The European Physical Journal Plus, Vol. 134 (2019), Iss. 7

    https://doi.org/10.1140/epjp/i2019-12700-5 [Citations: 3]
  22. A basic study of a fractional integral operator with extended Mittag-Leffler kernel

    Rahman, Gauhar | Suwan, Iyad | Nisar, Kottakkaran Sooppy | Abdeljawad, Thabet | Samraiz, Muhammad | Ali, Asad

    AIMS Mathematics, Vol. 6 (2021), Iss. 11 P.12757

    https://doi.org/10.3934/math.2021736 [Citations: 1]
  23. Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann‐Liouville derivative

    Owolabi, Kolade M.

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 1 P.274

    https://doi.org/10.1002/num.22197 [Citations: 40]
  24. On flow of electric current in RL circuit using Hilfer type composite fractional derivative

    Kachhia, Krunal B. | Prajapati, J. C. | Pandya, K. S. | Jadea, R.

    Proyecciones (Antofagasta), Vol. 38 (2019), Iss. 4 P.625

    https://doi.org/10.22199/issn.0717-6279-2019-04-0040 [Citations: 1]
  25. A numerical method for fractional Schrödinger equation of Lennard-Jones potential

    Al-Raeei, Marwan | Sayem El-Daher, Moustafa

    Physics Letters A, Vol. 383 (2019), Iss. 26 P.125831

    https://doi.org/10.1016/j.physleta.2019.07.019 [Citations: 22]
  26. RETRACTED ARTICLE: Fractional-order scheme for bovine babesiosis disease and tick populations

    Zafar, Zain Ul Abadin | Rehan, Kashif | Mushtaq, M

    Advances in Difference Equations, Vol. 2017 (2017), Iss. 1

    https://doi.org/10.1186/s13662-017-1133-2 [Citations: 23]
  27. An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method

    Rashid, Saima | Kubra, Khadija Tul | Sultana, Sobia | Agarwal, Praveen | Osman, M.S.

    Journal of Computational and Applied Mathematics, Vol. 413 (2022), Iss. P.114378

    https://doi.org/10.1016/j.cam.2022.114378 [Citations: 34]
  28. Mathematical Analysis and a Second-Order Compact Scheme for Nonlinear Caputo–Hadamard Fractional Sub-diffusion Equations

    Guan, Kaijing | Ou, Caixia | Wang, Zhibo

    Mediterranean Journal of Mathematics, Vol. 21 (2024), Iss. 3

    https://doi.org/10.1007/s00009-024-02617-0 [Citations: 6]
  29. Exact solutions of (1+2)-dimensional non-linear time-space fractional PDEs

    Kumar, Manoj

    Arab Journal of Mathematical Sciences, Vol. 30 (2024), Iss. 1 P.30

    https://doi.org/10.1108/AJMS-11-2021-0282 [Citations: 0]
  30. Integro-differential fractional boundary value problem on an unbounded domain

    Wang, Dong | Wang, Guotao

    Advances in Difference Equations, Vol. 2016 (2016), Iss. 1

    https://doi.org/10.1186/s13662-016-1051-8 [Citations: 8]
  31. A new nonlinear triadic model of predator–prey based on derivative with non-local and non-singular kernel

    Saad T Alkahtani, Badr | Atangana, Abdon | Koca, Ilknur

    Advances in Mechanical Engineering, Vol. 8 (2016), Iss. 11

    https://doi.org/10.1177/1687814016681906 [Citations: 9]
  32. Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function

    Mishra, Vishnu Narayan | Suthar, D.L. | Purohit, S.D. | Srivastava, Hari M.

    Cogent Mathematics, Vol. 4 (2017), Iss. 1 P.1320830

    https://doi.org/10.1080/23311835.2017.1320830 [Citations: 17]
  33. Existence and Uniqueness Results for Hadamard-Type Fractional Differential Equations with Nonlocal Fractional Integral Boundary Conditions

    Thiramanus, Phollakrit | Ntouyas, Sotiris K. | Tariboon, Jessada

    Abstract and Applied Analysis, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/902054 [Citations: 20]
  34. Analysis of non-homogeneous heat model with new trend of derivative with fractional order

    Alkahtani, Badr Saad T. | Atangana, Abdon

    Chaos, Solitons & Fractals, Vol. 89 (2016), Iss. P.566

    https://doi.org/10.1016/j.chaos.2016.03.027 [Citations: 94]
  35. Multigrid Waveform Relaxation for the Time-Fractional Heat Equation

    Gaspar, Francisco J. | Rodrigo, Carmen

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 4 P.A1201

    https://doi.org/10.1137/16M1090193 [Citations: 21]
  36. A Hybrid Method to Solve Time-Space Fractional PDEs with Proportional Delay

    Kumar, Manoj

    International Journal of Applied and Computational Mathematics, Vol. 8 (2022), Iss. 2

    https://doi.org/10.1007/s40819-022-01277-6 [Citations: 0]
  37. Certain integral transforms concerning the product of family of polynomials and generalized incomplete functions

    Meena, Sapna | Bhatter, Sanjay | Jangid, Kamlesh | Purohit, Sunil Dutt

    Moroccan Journal of Pure and Applied Analysis, Vol. 6 (2020), Iss. 2 P.243

    https://doi.org/10.2478/mjpaa-2020-0019 [Citations: 4]
  38. A non-integer order dengue internal transmission model

    Zafar, Zain Ul Abadin | Mushtaq, Muhammad | Rehan, Kashif

    Advances in Difference Equations, Vol. 2018 (2018), Iss. 1

    https://doi.org/10.1186/s13662-018-1472-7 [Citations: 19]
  39. COMPARISON THEOREMS FOR CAPUTO–HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS

    MA, LI

    Fractals, Vol. 27 (2019), Iss. 03 P.1950036

    https://doi.org/10.1142/S0218348X19500361 [Citations: 21]
  40. Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation

    Hu, Xiaozhe | Rodrigo, Carmen | Gaspar, Francisco J.

    Journal of Computational Physics, Vol. 416 (2020), Iss. P.109540

    https://doi.org/10.1016/j.jcp.2020.109540 [Citations: 6]
  41. Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel

    Saad, Khaled M. | Gómez-Aguilar, J.F.

    Physica A: Statistical Mechanics and its Applications, Vol. 509 (2018), Iss. P.703

    https://doi.org/10.1016/j.physa.2018.05.137 [Citations: 105]