A Brief Review of Elasticity and Viscoelasticity for Solids

A Brief Review of Elasticity and Viscoelasticity for Solids

Year:    2011

Author:    Harvey Thomas Banks, Shuhua Hu, Zackary R. Kenz

Advances in Applied Mathematics and Mechanics, Vol. 3 (2011), Iss. 1 : pp. 1–51

Abstract

There are a number of interesting applications where modeling elastic and/or viscoelastic materials is fundamental, including uses in civil engineering, the food industry, land mine detection and ultrasonic imaging. Here we provide an overview of the subject for both elastic and viscoelastic materials in order to understand the behavior of these materials. We begin with a brief introduction of some basic terminology and relationships in continuum mechanics, and a review of equations of motion in a continuum in both Lagrangian and Eulerian forms. To complete the set of equations, we then proceed to present and discuss a number of specific forms for the constitutive relationships between stress and strain proposed in the literature for both elastic and viscoelastic materials. In addition, we discuss some applications for these constitutive equations. Finally, we give a computational example describing the motion of soil experiencing dynamic loading by incorporating a specific form of constitutive equation into the equation of motion.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.10-m1030

Advances in Applied Mathematics and Mechanics, Vol. 3 (2011), Iss. 1 : pp. 1–51

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    51

Keywords:    Mathematical modeling Eulerian and Lagrangian formulations in continuum mechanics elasticity viscoelasticity computational simulations in soil constitutive relationships. continuum mechanics Bombyx mori silk fibroin Nonlinear wave equation

Author Details

Harvey Thomas Banks

Shuhua Hu

Zackary R. Kenz

  1. The Finite Element Method applied in the viscoelastic constitutive model of Kelvin–Voigt for characterization of the soil dynamic response to water leakage simulation

    Proença, Matheus S. | Paschoalini, Amarildo T. | Silva, João B. C. | Souza, Adriano | Obata, Daniel H. S. | Lima, Luis P. M. | Boaventura, Otávio D. Z.

    Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44 (2022), Iss. 10

    https://doi.org/10.1007/s40430-022-03773-8 [Citations: 0]
  2. Implementation of the novel perfectly matched layer element for elastodynamic problems in time-domain finite element method

    Chen, Junwei | Shou, Yundong | Zhou, Xiaoping

    Soil Dynamics and Earthquake Engineering, Vol. 152 (2022), Iss. P.107054

    https://doi.org/10.1016/j.soildyn.2021.107054 [Citations: 24]
  3. Internal Variable Theory in Viscoelasticity: Fractional Generalizations and Thermodynamical Restrictions

    Atanackovic, Teodor M. | Dolicanin, Cemal | Kacapor, Enes

    Mathematics, Vol. 10 (2022), Iss. 10 P.1708

    https://doi.org/10.3390/math10101708 [Citations: 2]
  4. A novel braiding method and impact behaviors of 3-D braided composite three-way integrated circular tubes

    Wang, Qihang | Gao, Xinyu | Hu, Meiqi | Gu, Bohong | Sun, Baozhong

    Composite Structures, Vol. 304 (2023), Iss. P.116451

    https://doi.org/10.1016/j.compstruct.2022.116451 [Citations: 2]
  5. Finite element simulations of a single type I collagen fibril, using a novel cross-linking system

    Czétényi, András | Lakatos, Ilona Éva | Tóth, Brigitta | Kiss, Rita Mária

    Journal of the Mechanical Behavior of Biomedical Materials, Vol. 143 (2023), Iss. P.105874

    https://doi.org/10.1016/j.jmbbm.2023.105874 [Citations: 0]
  6. Hydrodynamics of plastic deformations in electronic crystals

    Armas, Jay | van Heumen, Erik | Jain, Akash | Lier, Ruben

    Physical Review B, Vol. 107 (2023), Iss. 15

    https://doi.org/10.1103/PhysRevB.107.155108 [Citations: 7]
  7. Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation

    Zhang, Junhao | Chen, Yinglong | Liu, Yi | Gong, Yongjun

    Journal of Marine Science and Engineering, Vol. 10 (2022), Iss. 12 P.1914

    https://doi.org/10.3390/jmse10121914 [Citations: 6]
  8. Modeling of Tire Vertical Behavior Using a Test Bench

    Acosta, Enrique Carabias | Aguilar, Juan J. Castillo | Carrillo, Juan A. Cabrera | Garcia, Juan M. Velasco | Fernandez, Javier Perez | Vargas, Manuel G. Alcazar

    IEEE Access, Vol. 8 (2020), Iss. P.106531

    https://doi.org/10.1109/ACCESS.2020.3000533 [Citations: 7]
  9. A mixed parameter formulation with applications to linear viscoelastic slender structures

    Hernández, Erwin | Lepe, Felipe | Vellojin, Jesus

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 58 (2024), Iss. 1 P.157

    https://doi.org/10.1051/m2an/2023099 [Citations: 0]
  10. Magnetic resonance elastography in nonlinear viscoelastic materials under load

    Capilnasiu, Adela | Hadjicharalambous, Myrianthi | Fovargue, Daniel | Patel, Dharmesh | Holub, Ondrej | Bilston, Lynne | Screen, Hazel | Sinkus, Ralph | Nordsletten, David

    Biomechanics and Modeling in Mechanobiology, Vol. 18 (2019), Iss. 1 P.111

    https://doi.org/10.1007/s10237-018-1072-1 [Citations: 18]
  11. A 2-D model for friction of complex anisotropic surfaces

    Costagliola, Gianluca | Bosia, Federico | Pugno, Nicola M.

    Journal of the Mechanics and Physics of Solids, Vol. 112 (2018), Iss. P.50

    https://doi.org/10.1016/j.jmps.2017.11.015 [Citations: 22]
  12. Atomic force microscopy in disease‐related studies: Exploring tissue and cell mechanics

    Liu, Shuaiyuan | Han, Yibo | Kong, Lingwen | Wang, Guixue | Ye, Zhiyi

    Microscopy Research and Technique, Vol. 87 (2024), Iss. 4 P.660

    https://doi.org/10.1002/jemt.24471 [Citations: 5]
  13. Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series

    Endo, Vitor Takashi | de Carvalho Pereira, José Carlos

    Mechanics of Time-Dependent Materials, Vol. 21 (2017), Iss. 2 P.199

    https://doi.org/10.1007/s11043-016-9326-8 [Citations: 20]
  14. Understanding and modeling the plastic deformation of 3D printed concrete based on viscoelastic creep behavior

    Xia, Kailun | Chen, Yuning | Chen, Yu | Jia, Zijian | Jia, Lutao | Gao, Yueyi | Zhang, Yamei

    Additive Manufacturing, Vol. 84 (2024), Iss. P.104132

    https://doi.org/10.1016/j.addma.2024.104132 [Citations: 0]
  15. Strain state dependent anisotropic viscoelasticity of tendon-to-bone insertion

    Kuznetsov, Sergey | Pankow, Mark | Peters, Kara | Huang, Hsiao-Ying Shadow

    Mathematical Biosciences, Vol. 308 (2019), Iss. P.1

    https://doi.org/10.1016/j.mbs.2018.12.007 [Citations: 5]
  16. Computational Modelling and Analysis of Effect of Viscoelastic Materials on Damping and Vibrational Behaviors of Composite Structures—An Extensive Review

    Elmoghazy, Yasser Hamed | Safaei, Babak | Asmael, Mohammed | Sahmani, Saeid | Zeeshan, Qasim | Qin, Zhaoye

    Archives of Computational Methods in Engineering, Vol. 31 (2024), Iss. 5 P.2611

    https://doi.org/10.1007/s11831-023-10057-4 [Citations: 0]
  17. Impact Assessment of Gamma Radiation on Viscoelastic Properties of Amaranth Starch by Means of Fractional Maxwell-Wiechert Model

    Dziubiński, Marek | Orczykowska, Magdalena | Jóźwiak, Bertrand

    Soft Materials, Vol. 12 (2014), Iss. 4 P.420

    https://doi.org/10.1080/1539445X.2014.957837 [Citations: 3]
  18. Maxwell relaxation time for nonexponential α‐relaxation phenomena in glassy systems

    Doss, Karan | Wilkinson, Collin J. | Yang, Yongjian | Lee, Kuo‐Hao | Huang, Liping | Mauro, John C.

    Journal of the American Ceramic Society, Vol. 103 (2020), Iss. 6 P.3590

    https://doi.org/10.1111/jace.17051 [Citations: 25]
  19. Effect of stress relaxation on the sealing performance of O-rings in deep-sea hydraulic systems: A numerical investigation

    Wu, Jia-Bin | Li, Li | Wang, Pin-Jian

    Engineering Science and Technology, an International Journal, Vol. 51 (2024), Iss. P.101654

    https://doi.org/10.1016/j.jestch.2024.101654 [Citations: 1]
  20. A review of human cornea finite element modeling: geometry modeling, constitutive modeling, and outlooks

    Pang, Guobao | Wang, Chenyan | Wang, Xiaojun | Li, Xiaona | Meng, Qiaoyu

    Frontiers in Bioengineering and Biotechnology, Vol. 12 (2024), Iss.

    https://doi.org/10.3389/fbioe.2024.1455027 [Citations: 0]
  21. An Active Poroelastic Model for Mechanochemical Patterns in Protoplasmic Droplets of Physarum polycephalum

    Radszuweit, Markus | Engel, Harald | Bär, Markus | Jönsson, Henrik

    PLoS ONE, Vol. 9 (2014), Iss. 6 P.e99220

    https://doi.org/10.1371/journal.pone.0099220 [Citations: 43]
  22. Stress–Deformation Response of Rigid–Soft Particulate Mixtures under Repetitive Ko Loading Conditions

    Ryu, Byeonguk | Choo, Hyunwook | Park, Junghee | Burns, Susan E.

    Transportation Geotechnics, Vol. 37 (2022), Iss. P.100835

    https://doi.org/10.1016/j.trgeo.2022.100835 [Citations: 4]
  23. Analysis of a Dynamic Viscoelastic Contact Problem with Normal Compliance, Normal Damped Response, and Nonmonotone Slip Rate Dependent Friction

    Barboteu, Mikaël | Danan, David

    Advances in Mathematical Physics, Vol. 2016 (2016), Iss. P.1

    https://doi.org/10.1155/2016/1562509 [Citations: 2]
  24. Modelling of nonlinear viscoelastic creep behaviour of hot-mix asphalt

    Gao, Dongdong | Wang, Pengbin | Li, Ming | Luo, Wenbo

    Construction and Building Materials, Vol. 95 (2015), Iss. P.329

    https://doi.org/10.1016/j.conbuildmat.2015.07.112 [Citations: 17]
  25. Poroelastic and Viscoelastic Hallmarks in the Response of Porous and Transversely Isotropic Beams to Harmonic Excitation

    Su, Xing | Mehrabian, Amin

    Journal of Applied Mechanics, Vol. 91 (2024), Iss. 10

    https://doi.org/10.1115/1.4065838 [Citations: 0]
  26. Tungsten disulfide nanotubes enhance flow-induced crystallization and radio-opacity of polylactide without adversely affecting in vitro toxicity

    Ramachandran, Karthik | Shao, Zixuan | Di Luccio, Tiziana | Shen, Bo | Bello, Edgar E. Ruiz | Tammaro, Loredana | Villani, Fulvia | Loffredo, Fausta | Borriello, Carmela | Di Benedetto, Francesca | Magee, Eimear | McNally, Tony | Kornfield, Julia A.

    Acta Biomaterialia, Vol. 138 (2022), Iss. P.313

    https://doi.org/10.1016/j.actbio.2021.11.005 [Citations: 11]
  27. Determination of the characteristic curves of a nonlinear first order system from Fourier analysis

    Gonzalez, Federico J.

    Scientific Reports, Vol. 13 (2023), Iss. 1

    https://doi.org/10.1038/s41598-023-29151-5 [Citations: 2]
  28. Early-age creep behaviour of 3D printable mortars: Experimental characterisation and analytical modelling

    Esposito, Laura | Casagrande, Lorenzo | Menna, Costantino | Asprone, Domenico | Auricchio, Ferdinando

    Materials and Structures, Vol. 54 (2021), Iss. 6

    https://doi.org/10.1617/s11527-021-01800-z [Citations: 17]
  29. Bioplastics for Sustainable Development

    Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications

    Álvarez-Castillo, Estefanía | Bengoechea, Carlos | Felix, Manuel | Guerrero, Antonio

    2021

    https://doi.org/10.1007/978-981-16-1823-9_5 [Citations: 10]
  30. The effect of milk fat substitution on the rheological properties of Edam-type cheese

    Myhan, Ryszard | Jeliński, Tomasz | Białobrzewski, Ireneusz | Sadowska, Jadwiga | Jachimczyk, Ewelina

    European Food Research and Technology, Vol. 246 (2020), Iss. 12 P.2443

    https://doi.org/10.1007/s00217-020-03587-9 [Citations: 6]
  31. Volume viscosity of inhomogeneous fluids: a Maxwell relaxation model

    Sun, Zong-Li | Kang, Yan-Shuang | Zhang, Jun-Xia

    Acta Physica Sinica, Vol. 73 (2024), Iss. 6 P.066601

    https://doi.org/10.7498/aps.73.20231459 [Citations: 0]
  32. Strength modelling of Laminated Veneer Lumber (LVL) beams

    Gilbert, Benoit P. | Bailleres, Henri | Zhang, Hao | McGavin, Robert L.

    Construction and Building Materials, Vol. 149 (2017), Iss. P.763

    https://doi.org/10.1016/j.conbuildmat.2017.05.153 [Citations: 29]
  33. A thermodynamically consistent viscoelastic with rate-dependent damage constitutive model

    Jia, Huilin | Yuan, Zifeng

    International Journal of Solids and Structures, Vol. 269 (2023), Iss. P.112198

    https://doi.org/10.1016/j.ijsolstr.2023.112198 [Citations: 2]
  34. Long-term Creep Prediction of a Carbon Composite

    Chen, Xiayu | Wang, Bing | Zhao, Chenmin | Guan, Chenglong | Zhong, Shuncong

    Proceedings of the 2024 3rd International Symposium on Intelligent Unmanned Systems and Artificial Intelligence, (2024), P.395

    https://doi.org/10.1145/3669721.3674526 [Citations: 0]
  35. Comment on “Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions” by C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170–5182

    Berret, Jean-François

    Soft Matter, Vol. 18 (2022), Iss. 44 P.8514

    https://doi.org/10.1039/D2SM00653G [Citations: 0]
  36. Analysis of a contact problem with normal damped response and unilateral constraint

    Barboteu, Mikaël | Danan, David | Sofonea, Mircea

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 96 (2016), Iss. 4 P.408

    https://doi.org/10.1002/zamm.201400304 [Citations: 8]
  37. Bacterial Amyloids

    Probing DNA-Amyloid Interaction and Gel Formation by Active Magnetic Wire Microrheology

    Radiom, Milad | Oikonomou, Evdokia K. | Grados, Arnaud | Receveur, Mathieu | Berret, Jean-François

    2022

    https://doi.org/10.1007/978-1-0716-2529-3_19 [Citations: 0]
  38. The effect of fractional viscoelastic supports on the response of a flexible rotor based on H∞ and H2 optimization methods

    Heidari, Hamidreza | Ramezannejad Azarboni, Habib | Safarpour, Pedram

    Journal of Mechanics of Materials and Structures, Vol. 16 (2021), Iss. 3 P.263

    https://doi.org/10.2140/jomms.2021.16.263 [Citations: 0]
  39. Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo

    Lv, Zhiyi | de-Carvalho, Jorge | Telley, Ivo A. | Großhans, Jörg

    Journal of Cell Science, Vol. 134 (2021), Iss. 4

    https://doi.org/10.1242/jcs.246496 [Citations: 17]
  40. Wire‐Active Microrheology to Differentiate Viscoelastic Liquids from Soft Solids

    Loosli, Frédéric | Najm, Matthieu | Chan, Raymond | Oikonomou, Evdokia | Grados, Arnaud | Receveur, Mathieu | Berret, Jean‐François

    ChemPhysChem, Vol. 17 (2016), Iss. 24 P.4134

    https://doi.org/10.1002/cphc.201601037 [Citations: 14]
  41. An analytical study of mechanical behavior of polypropylene/calcium carbonate composites under uniaxial tension and three-point bending

    Xiong, Zhongqiang | Li, Yuqi | Pan, Lulu | Yu, Jinhong | Lu, Shaorong

    Composite Structures, Vol. 171 (2017), Iss. P.370

    https://doi.org/10.1016/j.compstruct.2017.03.054 [Citations: 7]
  42. Modelling of thin viscoelastic shell structures under Reissner–Mindlin kinematic assumption

    Hernandez, E. | Naranjo, C. | Vellojin, J.

    Applied Mathematical Modelling, Vol. 79 (2020), Iss. P.180

    https://doi.org/10.1016/j.apm.2019.10.031 [Citations: 8]
  43. Structural solutions to produce long timber Veneer Based Composite hollow sections

    Gilbert, Benoit P. | Underhill, Ian D. | Fernando, Dilum | Bailleres, Henri

    Construction and Building Materials, Vol. 139 (2017), Iss. P.81

    https://doi.org/10.1016/j.conbuildmat.2017.02.046 [Citations: 16]
  44. Modeling of Zircaloy cladding primary creep during load drop and reversal

    Tulkki, V. | Ikonen, T.

    Journal of Nuclear Materials, Vol. 445 (2014), Iss. 1-3 P.98

    https://doi.org/10.1016/j.jnucmat.2013.10.053 [Citations: 6]
  45. A viscoelastic-viscoplastic damage model with a cohesive zone in between

    Abhishek, Chandramohan | Raghukiran, Nadimpalli

    International Journal of Non-Linear Mechanics, Vol. 162 (2024), Iss. P.104713

    https://doi.org/10.1016/j.ijnonlinmec.2024.104713 [Citations: 2]
  46. A Thermo-Electro-Viscoelastic Model for Dielectric Elastomers

    Qin, Bao | Zhong, Zheng | Zhang, Tong-Yi

    Materials, Vol. 16 (2023), Iss. 17 P.5917

    https://doi.org/10.3390/ma16175917 [Citations: 0]
  47. Nonlinear Schapery viscoelastic material model for thermoplastic polymers

    Zink, Thomas | Kehrer, Loredana | Hirschberg, Valerian | Wilhelm, Manfred | Böhlke, Thomas

    Journal of Applied Polymer Science, Vol. 139 (2022), Iss. 17

    https://doi.org/10.1002/app.52028 [Citations: 10]
  48. Tissue Viscoelasticity Quantification Using Smartphone Tactile Imaging Probe With an Indenter and Viscoelastic Pitting Recovery Model

    Choi, Sung In | Kim, Albert | Won, Chang-Hee

    IEEE Sensors Journal, Vol. 22 (2022), Iss. 15 P.15365

    https://doi.org/10.1109/JSEN.2022.3185009 [Citations: 0]
  49. Weak formulations of quasistatic frictional contact problems

    Sofonea, Mircea | Xiao, Yi-bin

    Communications in Nonlinear Science and Numerical Simulation, Vol. 101 (2021), Iss. P.105888

    https://doi.org/10.1016/j.cnsns.2021.105888 [Citations: 5]
  50. Alternative Form of Standard Linear Solid Model for Characterizing Stress Relaxation and Creep: Including a Novel Parameter for Quantifying the Ratio of Fluids to Solids of a Viscoelastic Solid

    Lin, Che-Yu

    Frontiers in Materials, Vol. 7 (2020), Iss.

    https://doi.org/10.3389/fmats.2020.00011 [Citations: 28]
  51. Ultrasonic characterization of the complex Young’s modulus of polymer parts fabricated with microstereolithography

    Morris, Clinton B. | Cormack, John M. | Hamilton, Mark F. | Haberman, Michael R. | Seepersad, Carolyn C.

    Rapid Prototyping Journal, Vol. 24 (2018), Iss. 7 P.1193

    https://doi.org/10.1108/RPJ-01-2018-0011 [Citations: 1]
  52. Analysis of a history-dependent frictional contact problem

    Sofonea, M. | Farcaş, A.

    Applicable Analysis, Vol. 93 (2014), Iss. 2 P.428

    https://doi.org/10.1080/00036811.2013.778981 [Citations: 11]
  53. Automated Compression Device for Viscoelasticity Imaging

    Nabavizadeh, Alireza | Kinnick, Randall R. | Bayat, Mahdi | Amador, Carolina | Urban, Matthew W. | Alizad, Azra | Fatemi, Mostafa

    IEEE Transactions on Biomedical Engineering, Vol. 64 (2017), Iss. 7 P.1535

    https://doi.org/10.1109/TBME.2016.2612541 [Citations: 15]
  54. INVESTIGATION OF NANOBEAM CONTACT INTERACTION SYNCHRONIZATION

    Zhigalov, Maxim | Apryskin, Victor | Krys'ko, Vadim

    Automation and modeling in design and management, Vol. 2019 (2019), Iss. 4 P.12

    https://doi.org/10.30987/2658-3488-2019-2019-4-12-16 [Citations: 0]
  55. Characterization of three-dimensional fractional viscoelastic models through complex modulus analysis and polar decomposition

    Ghosh, Avradip | Both, Avinash Kumar | Cheung, Chin Li

    Physics of Fluids, Vol. 34 (2022), Iss. 7

    https://doi.org/10.1063/5.0097196 [Citations: 2]
  56. A Review on Modelling of Viscoelastic Contact Problems

    Wang, Dongze | de Boer, Gregory | Neville, Anne | Ghanbarzadeh, Ali

    Lubricants, Vol. 10 (2022), Iss. 12 P.358

    https://doi.org/10.3390/lubricants10120358 [Citations: 14]
  57. On the Schapery nonlinear viscoelastic model: A review

    Jamshidi, M. | Shokrieh, M.M.

    European Journal of Mechanics - A/Solids, Vol. 108 (2024), Iss. P.105403

    https://doi.org/10.1016/j.euromechsol.2024.105403 [Citations: 0]
  58. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate

    Lin, Che-Yu | Chen, Yi-Cheng | Lin, Chen-Hsin | Chang, Ke-Vin

    Polymers, Vol. 14 (2022), Iss. 10 P.2124

    https://doi.org/10.3390/polym14102124 [Citations: 14]
  59. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    Alonso, Sergio | Radszuweit, Markus | Engel, Harald | Bär, Markus

    Journal of Physics D: Applied Physics, Vol. 50 (2017), Iss. 43 P.434004

    https://doi.org/10.1088/1361-6463/aa8a1d [Citations: 21]
  60. Well-Posed Nonlinear Problems

    Mathematical Modeling in Contact Mechanics

    Sofonea, Mircea

    2023

    https://doi.org/10.1007/978-3-031-41416-9_8 [Citations: 0]
  61. Comparison of Relaxation Modulus Converted from Frequency- and Time-Dependent Viscoelastic Functions through Numerical Methods

    Zhang, Weiguang | Cui, Bingyan | Gu, Xingyu | Dong, Qiao

    Applied Sciences, Vol. 8 (2018), Iss. 12 P.2447

    https://doi.org/10.3390/app8122447 [Citations: 25]
  62. Nonlinear rate-dependent spectral constitutive equation for viscoelastic solids with residual stresses

    Shariff, M. H. B. M. | Merodio, J.

    Journal of Engineering Mathematics, Vol. 129 (2021), Iss. 1

    https://doi.org/10.1007/s10665-021-10148-w [Citations: 3]
  63. A Novel Finite Strain Visco-Hyperelasticity Based Constitutive Model For Elastomers

    Thakkar, Rohan | Czekanski, Aleksander

    Progress in Canadian Mechanical Engineering, (2018),

    https://doi.org/10.25071/10315/35253 [Citations: 0]
  64. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms

    Fabbri, S. | Johnston, D.A. | Rmaile, A. | Gottenbos, B. | De Jager, M. | Aspiras, M. | Starke, E.M. | Ward, M.T. | Stoodley, P.

    Journal of Dental Research, Vol. 95 (2016), Iss. 13 P.1494

    https://doi.org/10.1177/0022034516662813 [Citations: 17]
  65. New method to differentiate surface damping behavior and stress absorption capacities of common CAD/CAM restorative materials

    Niem, Th. | Gonschorek, S. | Wöstmann, B.

    Dental Materials, Vol. 37 (2021), Iss. 4 P.e213

    https://doi.org/10.1016/j.dental.2020.12.012 [Citations: 8]
  66. Oscillatory motion of a droplet in an active poroelastic two-phase model

    Kulawiak, Dirk Alexander | Löber, Jakob | Bär, Markus | Engel, Harald

    Journal of Physics D: Applied Physics, Vol. 52 (2019), Iss. 1 P.014004

    https://doi.org/10.1088/1361-6463/aae41d [Citations: 7]
  67. A flexible rheometer design to measure the visco-elastic response of soft solids over a wide range of frequency

    Rolley, Etienne | Snoeijer, Jacco H. | Andreotti, Bruno

    Review of Scientific Instruments, Vol. 90 (2019), Iss. 2

    https://doi.org/10.1063/1.5064599 [Citations: 8]
  68. State-of-the-art review on the performance of cellulosic dielectric materials in power transformers: Mechanical response and ageing

    Oria, C. | Ortiz, A. | Ferreño, D. | Carrascal, I. | Fernández, I.

    IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 26 (2019), Iss. 3 P.939

    https://doi.org/10.1109/TDEI.2019.007896 [Citations: 13]
  69. On the transient out-of-plane behaviour of high-density cellulose-based fibre mats

    Girlanda, Orlando | Tjahjanto, Denny D. | Östlund, Sören | Schmidt, Lars E.

    Journal of Materials Science, Vol. 51 (2016), Iss. 17 P.8131

    https://doi.org/10.1007/s10853-016-0083-5 [Citations: 13]
  70. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion

    Kohsaka, Hiroshi

    Frontiers in Neural Circuits, Vol. 17 (2023), Iss.

    https://doi.org/10.3389/fncir.2023.1175899 [Citations: 5]
  71. Learning viscoelasticity models from indirect data using deep neural networks

    Xu, Kailai | Tartakovsky, Alexandre M. | Burghardt, Jeff | Darve, Eric

    Computer Methods in Applied Mechanics and Engineering, Vol. 387 (2021), Iss. P.114124

    https://doi.org/10.1016/j.cma.2021.114124 [Citations: 34]
  72. Semi-analytical solution of telopodes elongation in the case of behavior modeling of living cells of telocytes type

    Roatesi, Simona | Stefan, Amado | Cretoiu, Dragos | Savopol, Tudor | Cretoiu, Sanda

    (2018) P.390007

    https://doi.org/10.1063/1.5043991 [Citations: 0]
  73. Simple empirical model for identifying rheological properties of soft biological tissues

    Kobayashi, Yo | Tsukune, Mariko | Miyashita, Tomoyuki | Fujie, Masakatsu G.

    Physical Review E, Vol. 95 (2017), Iss. 2

    https://doi.org/10.1103/PhysRevE.95.022418 [Citations: 19]
  74. Introducing an innovative FRF-based method for identification of an adhesive joint characteristics

    Dehnad, Masoud | Jahani, Kamal | Esmaeili, Arezoo | Sadeghi, Morteza

    International Journal of Adhesion and Adhesives, Vol. 130 (2024), Iss. P.103638

    https://doi.org/10.1016/j.ijadhadh.2024.103638 [Citations: 0]
  75. Decoupling rheology from particle concentration by charge modulation: Aqueous graphene-clay dispersions

    Cullari, Lucas Luciano | Yosefi, Gal | Nativ-Roth, Einat | Furó, István | Regev, Oren

    Journal of Colloid and Interface Science, Vol. 655 (2024), Iss. P.863

    https://doi.org/10.1016/j.jcis.2023.11.047 [Citations: 0]
  76. Advances in Structural Vibration

    Development of a Novel Viscoelastic Nanocomposite and Investigation of Its Damping Capacity for Large Frequency Band

    Shah, Nitesh | Bhattacharya, Bishakh | Kanchwala, Husain

    2021

    https://doi.org/10.1007/978-981-15-5862-7_20 [Citations: 1]
  77. A special feature of employment of Lagrange’s equations to the scleronomic mechanical systems

    Zanevskyy, Ihor | Zanevska, Lyudmyla

    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232 (2018), Iss. 9 P.1616

    https://doi.org/10.1177/0954406217706722 [Citations: 0]
  78. Study on Styrene-Butadiene-Styrene Modified Asphalt Binders Relaxation at Low Temperature

    Dziadosz, Sylwia | Słowik, Mieczysław | Niwczyk, Filip | Bilski, Marcin

    Materials, Vol. 14 (2021), Iss. 11 P.2888

    https://doi.org/10.3390/ma14112888 [Citations: 15]
  79. Piezoelectric Sensors and Actuators

    Characterization of Sensor and Actuator Materials

    Rupitsch, Stefan Johann

    2019

    https://doi.org/10.1007/978-3-662-57534-5_5 [Citations: 1]
  80. Dynamic Modeling of Fiber-Reinforced Soft Manipulator: A Visco-Hyperelastic Material-Based Continuum Mechanics Approach

    Mustaza, Seri Mastura | Elsayed, Yahya | Lekakou, Constantina | Saaj, Chakravarthini | Fras, Jan

    Soft Robotics, Vol. 6 (2019), Iss. 3 P.305

    https://doi.org/10.1089/soro.2018.0032 [Citations: 63]
  81. Dynamic mechanical analysis of PA 6 under hydrothermal influences and viscoelastic material modeling

    Kehrer, Loredana | Keursten, Johannes | Hirschberg, Valerian | Böhlke, Thomas

    Journal of Thermoplastic Composite Materials, Vol. 36 (2023), Iss. 11 P.4630

    https://doi.org/10.1177/08927057231155864 [Citations: 5]
  82. Continuum Mechanics through the Ages - From the Renaissance to the Twentieth Century

    Viscoelasticity of Solids (Old and New)

    Maugin, Gérard A.

    2016

    https://doi.org/10.1007/978-3-319-26593-3_7 [Citations: 0]
  83. Study of the properties of a multi-dimensional earthquake isolation device for reticulated structures

    Xu, Zhao-Dong | Huang, Xing-Huai | Guo, Yi-Feng | Wang, Shao-An

    Journal of Constructional Steel Research, Vol. 88 (2013), Iss. P.63

    https://doi.org/10.1016/j.jcsr.2013.05.002 [Citations: 19]
  84. Surface Treatment of Cellulosic Paper with Starch-Based Composites Reinforced with Nanocrystalline Cellulose

    Yang, Shujie | Tang, Yanjun | Wang, Junming | Kong, Fangong | Zhang, Junhua

    Industrial & Engineering Chemistry Research, Vol. 53 (2014), Iss. 36 P.13980

    https://doi.org/10.1021/ie502125s [Citations: 75]
  85. Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures

    Rheology of Salt Rocks

    Morales Salazar, Juan Pedro

    2024

    https://doi.org/10.1007/978-3-031-56525-0_4 [Citations: 0]
  86. Rheological Controls on Magma Reservoir Failure in a Thermo‐Viscoelastic Crust

    Head, Matthew | Hickey, James | Thompson, Joe | Gottsmann, Joachim | Fournier, Nicolas

    Journal of Geophysical Research: Solid Earth, Vol. 127 (2022), Iss. 7

    https://doi.org/10.1029/2021JB023439 [Citations: 8]
  87. A rotary lead viscoelastic damper with force-resisting capacity: Experimental verification and parametric analysis

    Zhou, Yun | Hong, Jinxiong | Zhang, Qian | Li, Dingbin | Lie, Wenchen

    Structures, Vol. 62 (2024), Iss. P.106219

    https://doi.org/10.1016/j.istruc.2024.106219 [Citations: 3]
  88. A numerical study of Mullins softening effects on mode I crack propagation in viscoelastic solids

    Hou, Nan | Guo, Qiang | Zaïri, Fahmi | Xu, Huixia | Ding, Ning

    International Journal of Damage Mechanics, Vol. (2024), Iss.

    https://doi.org/10.1177/10567895241297392 [Citations: 0]
  89. Historical purview and recent advances in fracture mechanics of elastomeric matrix composites

    Goswami, Mohit | Sharma, Sujit | Subbarayan, Ganesh | Bordas, Stéphane P.A. | Chattopadhyay, Santanu

    2023

    https://doi.org/10.1016/bs.aams.2022.09.002 [Citations: 2]
  90. Surface shape development of the pitch lap under the loading of the conditioner in continuous polishing process

    Liao, Defeng | Xie, Ruiqing | Zhao, Shijie | Ren, Lele | Zhang, Feihu | Wang, Jian | Xu, Qiao

    Journal of the American Ceramic Society, Vol. 102 (2019), Iss. 6 P.3129

    https://doi.org/10.1111/jace.16178 [Citations: 9]
  91. Acoustoelastic analysis of soft viscoelastic solids with application to pre-stressed phononic crystals

    Berjamin, Harold | De Pascalis, Riccardo

    International Journal of Solids and Structures, Vol. 241 (2022), Iss. P.111529

    https://doi.org/10.1016/j.ijsolstr.2022.111529 [Citations: 19]
  92. A generalized time-domain constitutive finite element approach for viscoelastic materials

    Abercrombie, Eric | Gregory McDaniel, J | Walsh, Timothy

    Modelling and Simulation in Materials Science and Engineering, Vol. 32 (2024), Iss. 3 P.035028

    https://doi.org/10.1088/1361-651X/ad2ba1 [Citations: 1]
  93. Research on dynamic stiffness with the high-order fractional derivative model for rubber bushing

    Zhang, Shupei | Chen, Zhao | Zhang, Wei | Xia, Mingyue

    Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 237 (2023), Iss. 4 P.668

    https://doi.org/10.1177/09544070221079504 [Citations: 2]
  94. Prediction of the dynamic equivalent stiffness for a rubber bushing using the finite element method and empirical modeling

    Lee, Hyun Seong | Shin, Jae Kyong | Msolli, Sabeur | Kim, Heung Soo

    International Journal of Mechanics and Materials in Design, Vol. 15 (2019), Iss. 1 P.77

    https://doi.org/10.1007/s10999-017-9400-7 [Citations: 31]
  95. Nonlinear anisotropic viscoelasticity

    Sadik, Souhayl | Yavari, Arash

    Journal of the Mechanics and Physics of Solids, Vol. 182 (2024), Iss. P.105461

    https://doi.org/10.1016/j.jmps.2023.105461 [Citations: 10]
  96. Advances in Variational and Hemivariational Inequalities

    Two History-Dependent Contact Problems

    Sofonea, Mircea | Migórski, Stanisław | Ochal, Anna

    2015

    https://doi.org/10.1007/978-3-319-14490-0_14 [Citations: 5]
  97. The contact interaction of size-dependent and multimodulus rectangular plate and beam

    Krysko, V A | Yakovleva, T V | Papkova, I V | Saltykova, O A | Pavlov, S P

    Journal of Physics: Conference Series, Vol. 1158 (2019), Iss. P.032021

    https://doi.org/10.1088/1742-6596/1158/3/032021 [Citations: 3]
  98. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Tulkki, Ville | Ikonen, Timo

    Journal of Nuclear Materials, Vol. 465 (2015), Iss. P.34

    https://doi.org/10.1016/j.jnucmat.2015.04.056 [Citations: 4]
  99. Bayesian inference to identify parameters in viscoelasticity

    Rappel, Hussein | Beex, Lars A. A. | Bordas, Stéphane P. A.

    Mechanics of Time-Dependent Materials, Vol. 22 (2018), Iss. 2 P.221

    https://doi.org/10.1007/s11043-017-9361-0 [Citations: 68]
  100. Mathematical model of living cells behavior: Case of telocytes

    Roatesi, Iurie | Roatesi, Simona | Rotaru, Constantin | Cretoiu, Sanda | Cretoiu, Dragos

    (2016) P.350002

    https://doi.org/10.1063/1.4952125 [Citations: 2]
  101. Nanofibrillated cellulose as coating agent for food packaging paper

    Jin, Kaiyan | Tang, Yanjun | Liu, Jichun | Wang, Junming | Ye, Chunjie

    International Journal of Biological Macromolecules, Vol. 168 (2021), Iss. P.331

    https://doi.org/10.1016/j.ijbiomac.2020.12.066 [Citations: 92]
  102. Fully history-dependent quasivariational inequalities in contact mechanics

    Sofonea, Mircea | Xiao, Yi-bin

    Applicable Analysis, Vol. 95 (2016), Iss. 11 P.2464

    https://doi.org/10.1080/00036811.2015.1093623 [Citations: 54]
  103. The Viscoelasticity of Intestines by Dynamical Mechanical Analysis

    Tan, Ren Jia | Liu, Hao | Zhang, Cheng | Li, Hong Yi | Wang, Yue Chao

    Applied Mechanics and Materials, Vol. 300-301 (2013), Iss. P.1628

    https://doi.org/10.4028/www.scientific.net/AMM.300-301.1628 [Citations: 0]
  104. Transverse viscoelastic properties of pulp fibers investigated with an atomic force microscopy method

    Czibula, Caterina | Ganser, Christian | Seidlhofer, Tristan | Teichert, Christian | Hirn, Ulrich

    Journal of Materials Science, Vol. 54 (2019), Iss. 17 P.11448

    https://doi.org/10.1007/s10853-019-03707-1 [Citations: 16]
  105. A Review of Physically Based and Thermodynamically Based Constitutive Models for Soft Materials

    Xiang, Yuhai | Zhong, Danming | Rudykh, Stephan | Zhou, Haofei | Qu, Shaoxing | Yang, Wei

    Journal of Applied Mechanics, Vol. 87 (2020), Iss. 11

    https://doi.org/10.1115/1.4047776 [Citations: 52]
  106. Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity

    Awrejcewicz, J. | Krysko, V. A. | Zhigalov, M. V. | Krysko, A. V.

    Nonlinear Dynamics, Vol. 91 (2018), Iss. 2 P.1191

    https://doi.org/10.1007/s11071-017-3939-6 [Citations: 16]
  107. An improved method to analyze the tensile behavior of carpet yarn

    Chi, Xinfu | Huang, Shuang | Liu, Ailin | Sun, Yize

    The Journal of The Textile Institute, Vol. 108 (2017), Iss. 6 P.1018

    https://doi.org/10.1080/00405000.2016.1209828 [Citations: 0]
  108. Compressive Strength Prediction of Veneer-Based Structural Products

    Gilbert, Benoit P.

    Journal of Materials in Civil Engineering, Vol. 30 (2018), Iss. 9

    https://doi.org/10.1061/(ASCE)MT.1943-5533.0002417 [Citations: 4]
  109. Analysis of a general dynamic history-dependent variational–hemivariational inequality

    Han, Weimin | Migórski, Stanisław | Sofonea, Mircea

    Nonlinear Analysis: Real World Applications, Vol. 36 (2017), Iss. P.69

    https://doi.org/10.1016/j.nonrwa.2016.12.007 [Citations: 39]
  110. Rationally Derived Three-Parameter Models for Elastomeric Suspension Bushings: Theory and Experiment

    Kanchwala, Husain | Chatterjee, Anindya

    Journal of Testing and Evaluation, Vol. 47 (2019), Iss. 2 P.1271

    https://doi.org/10.1520/JTE20170102 [Citations: 2]
  111. One-Dimensional Thermomechanical Model for Additive Manufacturing Using Laser-Based Powder Bed Fusion

    Jeronen, Juha | Tuovinen, Tero | Kurki, Matti

    Computation, Vol. 10 (2022), Iss. 6 P.83

    https://doi.org/10.3390/computation10060083 [Citations: 1]
  112. Epithelial Viscoelasticity Is Regulated by Mechanosensitive E-cadherin Turnover

    Iyer, K. Venkatesan | Piscitello-Gómez, Romina | Paijmans, Joris | Jülicher, Frank | Eaton, Suzanne

    Current Biology, Vol. 29 (2019), Iss. 4 P.578

    https://doi.org/10.1016/j.cub.2019.01.021 [Citations: 132]
  113. Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times

    Anssari-Benam, Afshin | Bucchi, Andrea | Bader, Dan L.

    Journal of Biomechanics, Vol. 48 (2015), Iss. 12 P.3128

    https://doi.org/10.1016/j.jbiomech.2015.07.015 [Citations: 9]
  114. Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics

    Mierke, Claudia Tanja

    Frontiers in Cell and Developmental Biology, Vol. 9 (2021), Iss.

    https://doi.org/10.3389/fcell.2021.785138 [Citations: 32]
  115. Fundamental Mathematical Modeling of Additive Manufacturing

    Analytical Solution in One Dimension

    Jeronen, Juha | Tuovinen, Tero | Kurki, Matti

    2024

    https://doi.org/10.1007/978-3-031-47250-3_7 [Citations: 0]
  116. State-of-the-art review on the performance of cellulosic dielectric materials in power transformers: Mechanical response and ageing

    Oria, C. | Ortiz, A. | Ferreño, D. | Carrascal, I. | Fernández, I.

    IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 26 (2019), Iss. 3 P.939

    https://doi.org/10.1109/TDEI.2019.007896 [Citations: 13]
  117. Anisotropic viscoelastic–viscoplastic continuum model for high-density cellulose-based materials

    Tjahjanto, D.D. | Girlanda, O. | Östlund, S.

    Journal of the Mechanics and Physics of Solids, Vol. 84 (2015), Iss. P.1

    https://doi.org/10.1016/j.jmps.2015.07.002 [Citations: 47]
  118. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials

    Álvarez-Castillo, Estefanía | Felix, Manuel | Bengoechea, Carlos | Guerrero, Antonio

    Foods, Vol. 10 (2021), Iss. 5 P.981

    https://doi.org/10.3390/foods10050981 [Citations: 53]
  119. The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility

    Erdel, Fabian | Baum, Michael | Rippe, Karsten

    Journal of Physics: Condensed Matter, Vol. 27 (2015), Iss. 6 P.064115

    https://doi.org/10.1088/0953-8984/27/6/064115 [Citations: 38]
  120. Novel methodology for the shear viscosity of confined fluids within the Maxwell viscoelastic regime

    Sun, Zongli | Kang, Yanshuang | Li, Songtao

    Chemical Engineering Science, Vol. 277 (2023), Iss. P.118847

    https://doi.org/10.1016/j.ces.2023.118847 [Citations: 2]
  121. Rethinking and researching the physical meaning of the standard linear solid model in viscoelasticity

    Lin, Che-Yu

    Mechanics of Advanced Materials and Structures, Vol. 31 (2024), Iss. 11 P.2370

    https://doi.org/10.1080/15376494.2022.2156638 [Citations: 7]
  122. Zener Model with General Fractional Calculus: Thermodynamical Restrictions

    Atanackovic, Teodor M. | Pilipovic, Stevan

    Fractal and Fractional, Vol. 6 (2022), Iss. 10 P.617

    https://doi.org/10.3390/fractalfract6100617 [Citations: 18]
  123. Singular travelling waves in soft viscoelastic solids of rate type

    Berjamin, Harold | Destrade, Michel | Saccomandi, Giuseppe

    European Journal of Mechanics - A/Solids, Vol. 103 (2024), Iss. P.105144

    https://doi.org/10.1016/j.euromechsol.2023.105144 [Citations: 2]
  124. Data on the viscoelastic behavior of neoprene rubber

    Kumar, Deepak | Sarangi, Somnath

    Data in Brief, Vol. 21 (2018), Iss. P.943

    https://doi.org/10.1016/j.dib.2018.10.081 [Citations: 11]
  125. The poroviscoelastodynamic solution to Mandel's problem

    Su, Xing | Mehrabian, Amin

    Journal of Sound and Vibration, Vol. 530 (2022), Iss. P.116987

    https://doi.org/10.1016/j.jsv.2022.116987 [Citations: 2]
  126. Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics

    Hu, Sanming | Shi, Zhijun | Zhao, Weiwei | Wang, Li | Yang, Guang

    Composites Part B: Engineering, Vol. 160 (2019), Iss. P.595

    https://doi.org/10.1016/j.compositesb.2018.12.077 [Citations: 36]
  127. Model validation for a noninvasive arterial stenosis detection problem

    Thomas Banks, H. | Hu, Shuhua | R. Kenz, Zackary | Kruse, Carola | Shaw, Simon | Whiteman, John | P. Brewin, Mark | E. Greenwald, Stephen | J. Birch, Malcolm

    Mathematical Biosciences and Engineering, Vol. 11 (2014), Iss. 3 P.427

    https://doi.org/10.3934/mbe.2014.11.427 [Citations: 5]
  128. Exploring the Impact of Thermally Controlled Crustal Viscosity on Volcanic Ground Deformation

    Head, Matthew | Hickey, James | Gottsmann, Joachim | Fournier, Nicolas

    Journal of Geophysical Research: Solid Earth, Vol. 126 (2021), Iss. 8

    https://doi.org/10.1029/2020JB020724 [Citations: 17]
  129. Is the assumption of linear elasticity within prosthodontics valid for polymers? —An exemplary study of possible problems

    SCHMIDT, Alexander | SCHRADER, Peer | FRENDEL, Kay | SCHLENZ, Maximiliane A. | WÖSTMANN, Bernd | KOLLING, Stefan

    Dental Materials Journal, Vol. 40 (2021), Iss. 1 P.52

    https://doi.org/10.4012/dmj.2019-373 [Citations: 3]
  130. Applied Polymer Science

    Mechanical Properties

    Gedde, Ulf W. | Hedenqvist, Mikael S. | Hakkarainen, Minna | Nilsson, Fritjof | Das, Oisik

    2021

    https://doi.org/10.1007/978-3-030-68472-3_6 [Citations: 1]
  131. Numerical Investigation of the Influence of Viscoelastic Deformation on the Pressure-Leakage Behavior of Plastic Pipes

    Ssozi, E. N. | Reddy, B. D. | van Zyl, J. E.

    Journal of Hydraulic Engineering, Vol. 142 (2016), Iss. 3

    https://doi.org/10.1061/(ASCE)HY.1943-7900.0001095 [Citations: 20]
  132. Nonlinear viscoelasticity of strain rate type: an overview

    Şengül, Yasemin

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 477 (2021), Iss. 2245

    https://doi.org/10.1098/rspa.2020.0715 [Citations: 10]
  133. Creep settlement analysis of pile foundations using viscoelastic model by incorporating nonlinear soil behaviour

    Mishra, Anumita | Patra, Nihar R.

    International Journal of Geotechnical Engineering, Vol. 16 (2022), Iss. 10 P.1234

    https://doi.org/10.1080/19386362.2022.2090695 [Citations: 1]
  134. Analysis of two quasistatic history-dependent contact models

    Cheng, Xiaoliang | Migórski, Stanisław | Ochal, Anna | Sofonea, Mircea

    Discrete & Continuous Dynamical Systems - B, Vol. 19 (2014), Iss. 8 P.2425

    https://doi.org/10.3934/dcdsb.2014.19.2425 [Citations: 7]
  135. Incremental constitutive models for elastoplastic materials undergoing finite deformations by using a four-dimensional formalism

    Wang, Mingchuan | Panicaud, Benoît | Rouhaud, Emmanuelle | Kerner, Richard | Roos, Arjen

    International Journal of Engineering Science, Vol. 106 (2016), Iss. P.199

    https://doi.org/10.1016/j.ijengsci.2016.06.006 [Citations: 5]
  136. Mechanical Behaviour of the Cellulosic Dielectric Materials of Windings in Power Transformers in Operation

    Oria, C. | Ortiz, A. | Fernandez, I. | Carrascal, I. | Ferreno, D.

    2018 XIII International Conference on Electrical Machines (ICEM), (2018), P.2400

    https://doi.org/10.1109/ICELMACH.2018.8506963 [Citations: 1]
  137. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology

    Correia, Elton L. | Brown, Nick | Razavi, Sepideh

    Nanomaterials, Vol. 11 (2021), Iss. 2 P.374

    https://doi.org/10.3390/nano11020374 [Citations: 38]
  138. A neuromechanical model for Drosophila larval crawling based on physical measurements

    Sun, Xiyang | Liu, Yingtao | Liu, Chang | Mayumi, Koichi | Ito, Kohzo | Nose, Akinao | Kohsaka, Hiroshi

    BMC Biology, Vol. 20 (2022), Iss. 1

    https://doi.org/10.1186/s12915-022-01336-w [Citations: 19]
  139. Dynamic History-Dependent Hemivariational Inequalities Controlled by Evolution Equations with Application to Contact Mechanics

    Zeng, Shengda | Migórski, Stanisław

    Journal of Dynamics and Differential Equations, Vol. 34 (2022), Iss. 3 P.1895

    https://doi.org/10.1007/s10884-021-10088-0 [Citations: 1]
  140. System identification based on characteristic curves: a mathematical connection between power series and Fourier analysis for first-order nonlinear systems

    Gonzalez, Federico J.

    Nonlinear Dynamics, Vol. 112 (2024), Iss. 18 P.16167

    https://doi.org/10.1007/s11071-024-09890-4 [Citations: 0]
  141. Machine learning-based multiscale framework for mechanical behavior of nano-crystalline structures

    Khoei, A.R. | Seddighian, M.R. | Sameti, A. Rezaei

    International Journal of Mechanical Sciences, Vol. 265 (2024), Iss. P.108897

    https://doi.org/10.1016/j.ijmecsci.2023.108897 [Citations: 10]
  142. Primary and secondary resonance responses of fractional viscoelastic PET membranes

    Qing, Jiajuan | Zhou, Shisheng | Wu, Jimei | Shao, Mingyue

    Communications in Nonlinear Science and Numerical Simulation, Vol. 116 (2023), Iss. P.106810

    https://doi.org/10.1016/j.cnsns.2022.106810 [Citations: 8]
  143. Fused Deposition Modeling Based 3D Printing

    Mechanical Properties of 3D-Printed Elastomers Produced by Fused Deposition Modeling

    Bakır, A. Alperen | Neshani, Roozbeh | Özerinç, Sezer

    2021

    https://doi.org/10.1007/978-3-030-68024-4_6 [Citations: 6]
  144. Convergence Criteria for Fixed Point Problems and Differential Equations

    Sofonea, Mircea | Tarzia, Domingo A.

    Mathematics, Vol. 12 (2024), Iss. 3 P.395

    https://doi.org/10.3390/math12030395 [Citations: 2]
  145. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction

    Mierke, Claudia Tanja

    Frontiers in Cell and Developmental Biology, Vol. 10 (2022), Iss.

    https://doi.org/10.3389/fcell.2022.789841 [Citations: 27]
  146. Variational formulation for fractional hyperbolic problems in the theory of viscoelasticity

    Bravo-Castillero, Julián | López Ríos, Luis Fernando

    Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 5

    https://doi.org/10.1007/s00033-022-01826-5 [Citations: 0]
  147. On the thermodynamic consistency of Quasi-linear viscoelastic models for soft solids

    Berjamin, Harold | Destrade, Michel | Parnell, William J.

    Mechanics Research Communications, Vol. 111 (2021), Iss. P.103648

    https://doi.org/10.1016/j.mechrescom.2020.103648 [Citations: 18]
  148. Viscoelasticity of model surfactant solutions determined by magnetic rotation spectroscopy

    Loosli, F. | Najm, M. | Berret, J.-F.

    Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 510 (2016), Iss. P.143

    https://doi.org/10.1016/j.colsurfa.2016.06.019 [Citations: 5]
  149. Post-Surgery Glioma Growth Modeling from Magnetic Resonance Images for Patients with Treatment

    Elazab, Ahmed | Bai, Hongmin | Abdulazeem, Yousry M. | Abdelhamid, Talaat | Zhou, Sijie | Wong, Kelvin K. L. | Hu, Qingmao

    Scientific Reports, Vol. 7 (2017), Iss. 1

    https://doi.org/10.1038/s41598-017-01189-2 [Citations: 16]
  150. 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy

    Biophysical Modeling of Respiratory Organ Motion

    Werner, René

    2013

    https://doi.org/10.1007/978-3-642-36441-9_4 [Citations: 2]
  151. Mathematical Applications in Continuum and Structural Mechanics

    An Application of Coulomb-Friction Model to Predict Internal Dissipation in Concrete

    Aretusi, Giuliano | Ciallella, Alessandro

    2021

    https://doi.org/10.1007/978-3-030-42707-8_5 [Citations: 3]
  152. Active poroelastic two-phase model for the motion of physarum microplasmodia

    Kulawiak, Dirk Alexander | Löber, Jakob | Bär, Markus | Engel, Harald | Tian, Fang-Bao

    PLOS ONE, Vol. 14 (2019), Iss. 8 P.e0217447

    https://doi.org/10.1371/journal.pone.0217447 [Citations: 7]
  153. Contactless Rheology of Soft Gels Over a Broad Frequency Range

    Zhang, Zaicheng | Arshad, Muhammad | Bertin, Vincent | Almohamad, Samir | Raphael, Elie | Salez, Thomas | Maali, Abdelhamid

    Physical Review Applied, Vol. 17 (2022), Iss. 6

    https://doi.org/10.1103/PhysRevApplied.17.064045 [Citations: 8]
  154. Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications

    Burtch, Nicholas C. | Heinen, Jurn | Bennett, Thomas D. | Dubbeldam, David | Allendorf, Mark D.

    Advanced Materials, Vol. 30 (2018), Iss. 37

    https://doi.org/10.1002/adma.201704124 [Citations: 193]
  155. Viscoelastic modelling of Zircaloy cladding in-pile transient creep

    Tulkki, Ville | Ikonen, Timo

    Journal of Nuclear Materials, Vol. 457 (2015), Iss. P.324

    https://doi.org/10.1016/j.jnucmat.2014.11.100 [Citations: 5]
  156. Nonlinear behaviour of epoxy and epoxy-based nanocomposites: an integrated experimental and computational analysis

    Tüfekci, Mertol | Baytak, Tuğba | Bulut, Osman | Pir, İnci | Acarer Arat, Seren | Özkal, Burak | Liu, Haibao | Dear, John P. | Salles, Loïc

    Mechanics Based Design of Structures and Machines, Vol. 52 (2024), Iss. 9 P.6858

    https://doi.org/10.1080/15397734.2023.2293763 [Citations: 1]
  157. Materials Selection for Sustainability in the Built Environment

    Assessment of wood

    Álvarez Carrasco, Fabián Andrés | García-Herrera, Claudio M. | Saavedra Flores, Erick I. | Vasco, Diego Andrés

    2024

    https://doi.org/10.1016/B978-0-323-95122-7.00009-5 [Citations: 0]
  158. Restrictions on parameters in distributed order fractional linear constitutive equations

    Atanacković, Teodor M. | Janev, Marko | Pilipović, Stevan

    Applied Mathematical Modelling, Vol. 110 (2022), Iss. P.99

    https://doi.org/10.1016/j.apm.2022.05.023 [Citations: 3]