Adaptive Finite Element Approximations for a Class of Nonlinear Eigenvalue Problems in Quantum Physics

Adaptive Finite Element Approximations for a Class of Nonlinear Eigenvalue Problems in Quantum Physics

Year:    2011

Author:    Huajie Chen, Xingao Gong, Lianhua He, Aihui Zhou

Advances in Applied Mathematics and Mechanics, Vol. 3 (2011), Iss. 4 : pp. 493–518

Abstract

In this paper, we study an adaptive finite element method for a class of nonlinear eigenvalue problems resulting from quantum physics that may have a nonconvex energy functional. We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.10-m1057

Advances in Applied Mathematics and Mechanics, Vol. 3 (2011), Iss. 4 : pp. 493–518

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:    Adaptive finite element convergence micro-structure nonlinear eigenvalue.

Author Details

Huajie Chen

Xingao Gong

Lianhua He

Aihui Zhou

  1. Convergence and quasi-optimality of <inline-formula><tex-math id="M1">$ L^2- $</tex-math></inline-formula>norms based an adaptive finite element method for nonlinear optimal control problems

    Lu, Zuliang | Huang, Fei | Wu, Xiankui | Li, Lin | Liu, Shang

    Electronic Research Archive, Vol. 28 (2020), Iss. 4 P.1459

    https://doi.org/10.3934/era.2020077 [Citations: 1]
  2. A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems

    Hong, Qichen | Xie, Hehu | Xu, Fei

    SIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 6 P.A4208

    https://doi.org/10.1137/17M1138157 [Citations: 15]
  3. A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates

    Xu, Fei | Huang, Qiumei | Wang, Min | Ma, Hongkun

    Applied Mathematics and Computation, Vol. 385 (2020), Iss. P.125404

    https://doi.org/10.1016/j.amc.2020.125404 [Citations: 0]
  4. Finite Element Methods for Eigenvalue Problems

    The Maxwell’s Eigenvalue Problem

    2016

    https://doi.org/10.1201/9781315372419-12 [Citations: 0]
  5. The energy-diminishing weak Galerkin finite element method for the computation of ground state and excited states in Bose-Einstein condensates

    Yang, Lin | Li, Xiang-Gui | Yan, Wei | Zhang, Ran

    Journal of Computational Physics, Vol. 520 (2025), Iss. P.113497

    https://doi.org/10.1016/j.jcp.2024.113497 [Citations: 0]
  6. Density Functional Theory

    Finite Element Methods for Density Functional Theory

    Dai, Xiaoying | Zhou, Aihui

    2023

    https://doi.org/10.1007/978-3-031-22340-2_10 [Citations: 0]
  7. An overview of a posteriori error estimation and post-processing methods for nonlinear eigenvalue problems

    Dusson, Geneviève | Maday, Yvon

    Journal of Computational Physics, Vol. 491 (2023), Iss. P.112352

    https://doi.org/10.1016/j.jcp.2023.112352 [Citations: 2]
  8. Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics

    Yang, Bin | Zhou, Aihui

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 1 P.209

    https://doi.org/10.1051/m2an/2020078 [Citations: 2]
  9. On discrete ground states of rotating Bose–Einstein condensates

    Henning, Patrick | Yadav, Mahima

    Mathematics of Computation, Vol. 94 (2024), Iss. 351 P.1

    https://doi.org/10.1090/mcom/3962 [Citations: 2]
  10. Adaptive Finite Element Approximations for Kohn--Sham Models

    Chen, Huajie | Dai, Xiaoying | Gong, Xingao | He, Lianhua | Zhou, Aihui

    Multiscale Modeling & Simulation, Vol. 12 (2014), Iss. 4 P.1828

    https://doi.org/10.1137/130916096 [Citations: 39]