Year: 2010
Author: Svend Tollak Munkejord
Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 2 : pp. 131–159
Abstract
This paper presents a study of pressure and velocity relaxation in two-phase flow calculations. Several of the present observations have been made elsewhere, and the purpose of the paper is to strengthen these observations and draw some conclusions. It is numerically demonstrated how a single-pressure two-fluid model is recovered when applying instantaneous pressure relaxation to a two-pressure two-fluid model. Further, instantaneous velocity relaxation yields a drift-flux model. It is also shown that the pressure relaxation has the disadvantage of inducing a large amount of numerical smearing. The comparisons have been conducted by using nalogous numerical schemes, and a multi-stage centred (MUSTA) scheme for non-conservative two-fluid models has been applied to and tested on the two-pressure two-fluid model. As for others, previously tested two-phase flow models, the MUSTA schemes have been found to be robust, accurate and non-oscillatory. However, compared to their Roe reference schemes, they consistently have a lower computational efficiency for problems involving mass transport.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/aamm.09-m0971
Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 2 : pp. 131–159
Published online: 2010-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 29
Keywords: Two-phase flow two-fluid model MUSTA scheme pressure relaxation velocity relaxation.
Author Details
-
A split scheme for the two-fluid seven-equation model with source terms
Zhang, Hao | Yang, YanhuaProgress in Nuclear Energy, Vol. 124 (2020), Iss. P.103350
https://doi.org/10.1016/j.pnucene.2020.103350 [Citations: 0] -
A lattice Boltzmann model for computing compressible two-phase flows with high density ratio
Yazdi, Hossein | Rahimian, Mohammad Hassan | Safari, HesameddinSN Applied Sciences, Vol. 2 (2020), Iss. 1
https://doi.org/10.1007/s42452-019-1872-7 [Citations: 0] -
Numerical simulation of compressible two-phase flow using a diffuse interface method
Ansari, M.R. | Daramizadeh, A.International Journal of Heat and Fluid Flow, Vol. 42 (2013), Iss. P.209
https://doi.org/10.1016/j.ijheatfluidflow.2013.02.003 [Citations: 34] -
Investigation of shock and a dust cloud interaction in Eulerian framework using a newly developed OpenFOAM solver
Ejtehadi, Omid | Mahravan, Ehsan | Sohn, IlyoupInternational Journal of Multiphase Flow, Vol. 145 (2021), Iss. P.103812
https://doi.org/10.1016/j.ijmultiphaseflow.2021.103812 [Citations: 7] -
Slug type hydrodynamic instability analysis using a five equations hyperbolic two-pressure, two-fluid model
Ansari, M.R. | Daramizadeh, A.Ocean Engineering, Vol. 52 (2012), Iss. P.1
https://doi.org/10.1016/j.oceaneng.2012.05.003 [Citations: 11] -
Numerical simulation for a one‐pressure model of two‐phase flows using a new finite volume scheme
Mohamed, Kamel | Benkhaldoun, Fayssal | Seadawy, Aly R.Mathematical Methods in the Applied Sciences, Vol. (2022), Iss.
https://doi.org/10.1002/mma.8771 [Citations: 0] -
Numerical Approximation of Hyperbolic Systems of Conservation Laws
Source Terms
Godlewski, Edwige | Raviart, Pierre-Arnaud2021
https://doi.org/10.1007/978-1-0716-1344-3_7 [Citations: 0] -
An exponential time-differencing method for monotonic relaxation systems
Aursand, Peder | Evje, Steinar | Flåtten, Tore | Giljarhus, Knut Erik Teigen | Munkejord, Svend TollakApplied Numerical Mathematics, Vol. 80 (2014), Iss. P.1
https://doi.org/10.1016/j.apnum.2014.01.003 [Citations: 3] -
A modified Rusanov scheme for shallow water equations with topography and two phase flows
Mohamed, Kamel | Benkhaldoun, F.The European Physical Journal Plus, Vol. 131 (2016), Iss. 6
https://doi.org/10.1140/epjp/i2016-16207-3 [Citations: 15] -
Simulation of slug flow initiation with adaptive numerical diffusion based on wavelength effect
Abbaspour, Iman | Shokri, VahidJournal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 43 (2021), Iss. 10
https://doi.org/10.1007/s40430-021-03178-z [Citations: 1] -
CO2 transport: Data and models – A review
Munkejord, Svend Tollak | Hammer, Morten | Løvseth, Sigurd W.Applied Energy, Vol. 169 (2016), Iss. P.499
https://doi.org/10.1016/j.apenergy.2016.01.100 [Citations: 117] -
Development of a Solver for Multi-Fluid and Multi-Pressure Model
Zhang, Hao | Yang, YanhuaNuclear Science and Engineering, Vol. 193 (2019), Iss. 3 P.283
https://doi.org/10.1080/00295639.2018.1512788 [Citations: 0] -
On the dynamics of instabilities in two-fluid models for bubbly flows
Jareteg, Klas | Ström, Henrik | Sasic, Srdjan | Demazière, ChristopheChemical Engineering Science, Vol. 170 (2017), Iss. P.184
https://doi.org/10.1016/j.ces.2017.03.063 [Citations: 10] -
Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option?
Vazquez-Gonzalez, T. | Llor, A. | Fochesato, ChristopheInternational Journal of Multiphase Flow, Vol. 81 (2016), Iss. P.104
https://doi.org/10.1016/j.ijmultiphaseflow.2015.12.007 [Citations: 15] -
A suitability analysis of transient one-dimensional two-fluid numerical models for simulating two-phase gas-liquid flows based on benchmark problems
Sondermann, Carina Nogueira | Viggiano, Raphael | Rachid, Felipe Bastos de Freitas | Bodstein, Gustavo C.R.Computers & Fluids, Vol. 229 (2021), Iss. P.105070
https://doi.org/10.1016/j.compfluid.2021.105070 [Citations: 4]