A Free Streaming Contact Preserving Scheme for the M<sub>1</sub> Model

A Free Streaming Contact Preserving Scheme for the M<sub>1</sub> Model

Year:    2010

Author:    C. Berthon, J. Dubois, B. Dubroca, T.-H. Nguyen-Bui, R. Turpault

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 259–285

Abstract

The present work concerns the numerical approximation of the $M_1$ model for radiative transfer. The main purpose is to introduce an accurate finite volume method according to the nonlinear system of conservation laws that governs this model. We propose to derive an HLLC method which preserves the stationary contact waves. To supplement this essential property, the method is proved to be robust and to preserve the physical admissible states. Next, a relevant asymptotic preserving correction is proposed in order to obtain a method which is able to deal with all the physical regimes. The relevance of the numerical procedure is exhibited thanks to numerical simulations of physical interest.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.09-m09105

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 259–285

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    27

Keywords:    Radiative transfer equation $M_1$ model finite volume method Riemann solver HLLC scheme asymptotic preserving scheme.

Author Details

C. Berthon

J. Dubois

B. Dubroca

T.-H. Nguyen-Bui

R. Turpault

  1. Stabilized mixed finite element method for the M1 radiation model

    Schmid, Q. | Mesri, Y. | Hachem, E. | Codina, R.

    Computer Methods in Applied Mechanics and Engineering, Vol. 335 (2018), Iss. P.69

    https://doi.org/10.1016/j.cma.2018.01.046 [Citations: 1]
  2. Deterministic model for the transport of energetic particles: Application in the electron radiotherapy

    Caron, J. | Feugeas, J.-L. | Dubroca, B. | Kantor, G. | Dejean, C. | Birindelli, G. | Pichard, T. | Nicolaï, P. | d'Humières, E. | Frank, M. | Tikhonchuk, V.

    Physica Medica, Vol. 31 (2015), Iss. 8 P.912

    https://doi.org/10.1016/j.ejmp.2015.07.148 [Citations: 15]
  3. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes

    Blachère, F. | Turpault, R.

    Journal of Computational Physics, Vol. 315 (2016), Iss. P.98

    https://doi.org/10.1016/j.jcp.2016.03.045 [Citations: 9]
  4. Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes

    Duran, A. | Marche, F. | Turpault, R. | Berthon, C.

    Journal of Computational Physics, Vol. 287 (2015), Iss. P.184

    https://doi.org/10.1016/j.jcp.2015.02.007 [Citations: 21]
  5. A reduced model for relativistic electron beam transport in solids and dense plasmas

    Touati, M | Feugeas, J-L | Nicolaï, Ph | Santos, J J | Gremillet, L | Tikhonchuk, V T

    New Journal of Physics, Vol. 16 (2014), Iss. 7 P.073014

    https://doi.org/10.1088/1367-2630/16/7/073014 [Citations: 26]
  6. Finite Volumes for Complex Applications VI Problems & Perspectives

    Finite Volumes Asymptotic Preserving Schemes for Systems of Conservation Laws with Stiff Source Terms

    Berthon, C. | Turpault, R.

    2011

    https://doi.org/10.1007/978-3-642-20671-9_12 [Citations: 0]
  7. An asymptotic preserving scheme for the $$M_1$$ model on polygonal and conical meshes

    Blanc, Xavier | Hoch, Philippe | Lasuen, Clément

    Calcolo, Vol. 61 (2024), Iss. 2

    https://doi.org/10.1007/s10092-024-00574-4 [Citations: 0]
  8. Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport

    Buet, Christophe | Després, Bruno | Franck, Emmanuel

    Journal of Scientific Computing, Vol. 62 (2015), Iss. 2 P.371

    https://doi.org/10.1007/s10915-014-9859-4 [Citations: 10]
  9. A robust and well‐balanced scheme for the 2D Saint‐Venant system on unstructured meshes with friction source term

    Duran, A.

    International Journal for Numerical Methods in Fluids, Vol. 78 (2015), Iss. 2 P.89

    https://doi.org/10.1002/fld.4011 [Citations: 10]
  10. Convergence to nonlinear diffusion waves for solutions of M1 model

    Zhang, Nangao | Zhu, Changjiang

    Journal of Differential Equations, Vol. 320 (2022), Iss. P.1

    https://doi.org/10.1016/j.jde.2022.02.061 [Citations: 0]
  11. An efficient scheme on wet/dry transitions for shallow water equations with friction

    Berthon, Christophe | Marche, Fabien | Turpault, Rodolphe

    Computers & Fluids, Vol. 48 (2011), Iss. 1 P.192

    https://doi.org/10.1016/j.compfluid.2011.04.011 [Citations: 25]
  12. Effect of nonthermal electrons on the shock formation in a laser driven plasma

    Nicolaï, Ph. | Feugeas, J.-L. | Nguyen-bui, T. | Tikhonchuk, V. | Antonelli, L. | Batani, D. | Maheut, Y.

    Physics of Plasmas, Vol. 22 (2015), Iss. 4

    https://doi.org/10.1063/1.4917472 [Citations: 16]
  13. An asymptotic preserving scheme with the maximum principle for theM1model on distorded meshes

    Buet, Christophe | Després, Bruno | Franck, Emmanuel

    Comptes Rendus. Mathématique, Vol. 350 (2012), Iss. 11-12 P.633

    https://doi.org/10.1016/j.crma.2012.07.002 [Citations: 7]
  14. An asymptotic-preserving scheme for systems of conservation laws with source terms on 2D unstructured meshes

    Berthon, Christophe | Moebs, Guy | Sarazin-Desbois, Céline | Turpault, Rodolphe

    Communications in Applied Mathematics and Computational Science, Vol. 11 (2016), Iss. 1 P.55

    https://doi.org/10.2140/camcos.2016.11.55 [Citations: 6]
  15. A Radiative Transfer Module for Relativistic Magnetohydrodynamics in the PLUTO Code

    Melon Fuksman, Julio David | Mignone, Andrea

    The Astrophysical Journal Supplement Series, Vol. 242 (2019), Iss. 2 P.20

    https://doi.org/10.3847/1538-4365/ab18ff [Citations: 25]
  16. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

    An Asymptotic-Preserving Scheme for Systems of Conservation Laws with Source Terms on 2D Unstructured Meshes

    Berthon, C. | Moebs, G. | Turpault, R.

    2014

    https://doi.org/10.1007/978-3-319-05684-5_9 [Citations: 0]