Year: 2010
Author: El-H. Essoufi, El-H. Benkhira, R. Fakhar
Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 355–378
Abstract
We consider a mathematical model which describes the static frictional contact between a piezoelectric body and a conductive foundation. A non linear electro-elastic constitutive law is used to model the piezoelectric material. The unilateral contact is modelled using the Signorini condition, nonlocal Coulomb friction law with slip dependent friction coefficient and a regularized electrical conductivity condition. Existence and uniqueness of a weak solution is established. The finite elements approximation of the problem is presented. A priori error estimates of the solutions are derived and a convergent successive iteration technique is proposed.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/aamm.09-m0980
Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 355–378
Published online: 2010-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 24
Keywords: stochastic difference equations global asymptotic stability almost sure stability stochastic differential equations and partially drift-implicit numerical methods.
Author Details
-
Alternating direction method of multiplier for a unilateral contact problem in electro-elastostatics
Essoufi, E.-H. | Koko, J. | Zafrar, A.Computers & Mathematics with Applications, Vol. 73 (2017), Iss. 8 P.1789
https://doi.org/10.1016/j.camwa.2017.02.027 [Citations: 6] -
Numerical approximation of a frictional contact problem in elasto‐plasticity based on the penalty approach
Benkhira, El‐Hassan | Fakhar, Rachid | Mandyly, YoussefZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 99 (2019), Iss. 12
https://doi.org/10.1002/zamm.201800300 [Citations: 2] -
Variational analysis of unilateral contact problem for thermo-piezoelectric materials with friction
Hachlaf, A. | Benaissa, H. | Benkhira, EL-H. | Fakhar, R.Indian Journal of Pure and Applied Mathematics, Vol. 53 (2022), Iss. 2 P.454
https://doi.org/10.1007/s13226-021-00108-6 [Citations: 0] -
On the Signorini’s Contact Problem with Non-local Coulomb’s Friction in Thermo-Piezoelectricity
Benaissa, Hicham | Benkhira, El-Hassan | Fakhar, Rachid | Hachlaf, AbdelhadiActa Applicandae Mathematicae, Vol. 169 (2020), Iss. 1 P.33
https://doi.org/10.1007/s10440-019-00287-9 [Citations: 1] -
Existence results for unilateral contact problem with friction of thermo-electro-elasticity
Benaissa, H. | Essoufi, El-H. | Fakhar, R.Applied Mathematics and Mechanics, Vol. 36 (2015), Iss. 7 P.911
https://doi.org/10.1007/s10483-015-1957-9 [Citations: 18] -
A mixed variational approach for modeling frictional contact problems with normal compliance in electro-elasticity
Benkhira, El Hassan | El Yamouni, Ouiame | Fakhar, Rachid | Mandyly, YoussefActa Mechanica, Vol. 235 (2024), Iss. 11 P.6775
https://doi.org/10.1007/s00707-024-04070-2 [Citations: 0] -
Quasistatic frictional thermo‐piezoelectric contact problem
Benaissa, Hicham | Benkhira, El‐Hassan | Fakhar, Rachid | Hachlaf, AbdelhadiMathematical Methods in the Applied Sciences, Vol. 42 (2019), Iss. 4 P.1292
https://doi.org/10.1002/mma.5442 [Citations: 7] -
Analysis of a Signorini problem with nonlocal friction in thermo-piezoelectricity
Benaissa, H. | Essoufi, EL-H. | Fakhar, R.Glasnik Matematicki, Vol. 51 (2016), Iss. 2 P.391
https://doi.org/10.3336/gm.51.2.08 [Citations: 14] -
On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity
BENKHIRA, El-H. | ESSOUFI, El-H. | FAKHAR, R.European Journal of Applied Mathematics, Vol. 27 (2016), Iss. 1 P.1
https://doi.org/10.1017/S0956792515000248 [Citations: 13] -
Existence and numerical approximation of a solution to frictional contact problem for electro-elastic materials
Baiz, Othman | Benkhira, El-Hassan | Fakhar, RachidApplied Mathematics-A Journal of Chinese Universities, Vol. 39 (2024), Iss. 2 P.201
https://doi.org/10.1007/s11766-024-3646-2 [Citations: 0] -
Numerical treatment of a static thermo-electro-elastic contact problem with friction
Benkhira, EL-Hassan | Fakhar, Rachid | Hachlaf, Abdelhadi | Mandyly, YoussefComputational Mechanics, Vol. 71 (2023), Iss. 1 P.25
https://doi.org/10.1007/s00466-022-02208-4 [Citations: 2] -
Error estimates of piezoelectric Signorini's contact problems
El Khalfi, Hamid | Baiz, Othmane | Benaissa, HichamZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103 (2023), Iss. 12
https://doi.org/10.1002/zamm.202300112 [Citations: 2] -
A method for solving an electro-viscoelastic contact problem with damped response and friction
Bendarag, Abdesadik | Bouallala, Mustapha | Essoufi, EL-HassanRendiconti del Circolo Matematico di Palermo Series 2, Vol. 73 (2024), Iss. 7 P.2413
https://doi.org/10.1007/s12215-024-01040-4 [Citations: 0] -
J‐ADMM for a multi‐contact problem in electro‐elastostatics
Essoufi, El‐Hassan | Zafrar, AbderrahimZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 102 (2022), Iss. 1
https://doi.org/10.1002/zamm.202000288 [Citations: 0] -
A Decomposition Method for a Unilateral Contact Problem with Tresca Friction Arising in Electro-elastostatics
Essoufi, E.-H. | Fakhar, R. | Koko, J.Numerical Functional Analysis and Optimization, Vol. 36 (2015), Iss. 12 P.1533
https://doi.org/10.1080/01630563.2015.1078812 [Citations: 13]