Analysis and Numerical Approximation of an Electro-Elastic Frictional Contact Problem

Analysis and Numerical Approximation of an Electro-Elastic Frictional Contact Problem

Year:    2010

Author:    El-H. Essoufi, El-H. Benkhira, R. Fakhar

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 355–378

Abstract

We consider a mathematical model which describes the static frictional contact between a piezoelectric body and a conductive foundation. A non linear electro-elastic constitutive law is used to model the piezoelectric material. The unilateral contact is modelled using the Signorini condition, nonlocal Coulomb friction law with slip dependent friction coefficient and a regularized electrical conductivity condition. Existence and uniqueness of a weak solution is established. The finite elements approximation of the problem is presented. A priori error estimates of the solutions are derived and a convergent successive iteration technique is proposed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.09-m0980

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 355–378

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    stochastic difference equations global asymptotic stability almost sure stability stochastic differential equations and partially drift-implicit numerical methods.

Author Details

El-H. Essoufi

El-H. Benkhira

R. Fakhar

  1. Alternating direction method of multiplier for a unilateral contact problem in electro-elastostatics

    Essoufi, E.-H. | Koko, J. | Zafrar, A.

    Computers & Mathematics with Applications, Vol. 73 (2017), Iss. 8 P.1789

    https://doi.org/10.1016/j.camwa.2017.02.027 [Citations: 6]
  2. Numerical approximation of a frictional contact problem in elasto‐plasticity based on the penalty approach

    Benkhira, El‐Hassan | Fakhar, Rachid | Mandyly, Youssef

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 99 (2019), Iss. 12

    https://doi.org/10.1002/zamm.201800300 [Citations: 2]
  3. Variational analysis of unilateral contact problem for thermo-piezoelectric materials with friction

    Hachlaf, A. | Benaissa, H. | Benkhira, EL-H. | Fakhar, R.

    Indian Journal of Pure and Applied Mathematics, Vol. 53 (2022), Iss. 2 P.454

    https://doi.org/10.1007/s13226-021-00108-6 [Citations: 0]
  4. On the Signorini’s Contact Problem with Non-local Coulomb’s Friction in Thermo-Piezoelectricity

    Benaissa, Hicham | Benkhira, El-Hassan | Fakhar, Rachid | Hachlaf, Abdelhadi

    Acta Applicandae Mathematicae, Vol. 169 (2020), Iss. 1 P.33

    https://doi.org/10.1007/s10440-019-00287-9 [Citations: 1]
  5. Existence results for unilateral contact problem with friction of thermo-electro-elasticity

    Benaissa, H. | Essoufi, El-H. | Fakhar, R.

    Applied Mathematics and Mechanics, Vol. 36 (2015), Iss. 7 P.911

    https://doi.org/10.1007/s10483-015-1957-9 [Citations: 18]
  6. A mixed variational approach for modeling frictional contact problems with normal compliance in electro-elasticity

    Benkhira, El Hassan | El Yamouni, Ouiame | Fakhar, Rachid | Mandyly, Youssef

    Acta Mechanica, Vol. 235 (2024), Iss. 11 P.6775

    https://doi.org/10.1007/s00707-024-04070-2 [Citations: 0]
  7. Quasistatic frictional thermo‐piezoelectric contact problem

    Benaissa, Hicham | Benkhira, El‐Hassan | Fakhar, Rachid | Hachlaf, Abdelhadi

    Mathematical Methods in the Applied Sciences, Vol. 42 (2019), Iss. 4 P.1292

    https://doi.org/10.1002/mma.5442 [Citations: 7]
  8. Analysis of a Signorini problem with nonlocal friction in thermo-piezoelectricity

    Benaissa, H. | Essoufi, EL-H. | Fakhar, R.

    Glasnik Matematicki, Vol. 51 (2016), Iss. 2 P.391

    https://doi.org/10.3336/gm.51.2.08 [Citations: 14]
  9. On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity

    BENKHIRA, El-H. | ESSOUFI, El-H. | FAKHAR, R.

    European Journal of Applied Mathematics, Vol. 27 (2016), Iss. 1 P.1

    https://doi.org/10.1017/S0956792515000248 [Citations: 13]
  10. Existence and numerical approximation of a solution to frictional contact problem for electro-elastic materials

    Baiz, Othman | Benkhira, El-Hassan | Fakhar, Rachid

    Applied Mathematics-A Journal of Chinese Universities, Vol. 39 (2024), Iss. 2 P.201

    https://doi.org/10.1007/s11766-024-3646-2 [Citations: 0]
  11. Numerical treatment of a static thermo-electro-elastic contact problem with friction

    Benkhira, EL-Hassan | Fakhar, Rachid | Hachlaf, Abdelhadi | Mandyly, Youssef

    Computational Mechanics, Vol. 71 (2023), Iss. 1 P.25

    https://doi.org/10.1007/s00466-022-02208-4 [Citations: 2]
  12. Error estimates of piezoelectric Signorini's contact problems

    El Khalfi, Hamid | Baiz, Othmane | Benaissa, Hicham

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103 (2023), Iss. 12

    https://doi.org/10.1002/zamm.202300112 [Citations: 2]
  13. A method for solving an electro-viscoelastic contact problem with damped response and friction

    Bendarag, Abdesadik | Bouallala, Mustapha | Essoufi, EL-Hassan

    Rendiconti del Circolo Matematico di Palermo Series 2, Vol. 73 (2024), Iss. 7 P.2413

    https://doi.org/10.1007/s12215-024-01040-4 [Citations: 0]
  14. J‐ADMM for a multi‐contact problem in electro‐elastostatics

    Essoufi, El‐Hassan | Zafrar, Abderrahim

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 102 (2022), Iss. 1

    https://doi.org/10.1002/zamm.202000288 [Citations: 0]
  15. A Decomposition Method for a Unilateral Contact Problem with Tresca Friction Arising in Electro-elastostatics

    Essoufi, E.-H. | Fakhar, R. | Koko, J.

    Numerical Functional Analysis and Optimization, Vol. 36 (2015), Iss. 12 P.1533

    https://doi.org/10.1080/01630563.2015.1078812 [Citations: 13]