On Lateral-Torsional Buckling of Non-Local Beams

On Lateral-Torsional Buckling of Non-Local Beams

Year:    2010

Author:    N. Challamel, C. M. Wang

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 389–398

Abstract

Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro- or nano-structures. This paper deals with the lateral-torsional buckling of elastic nonlocal small-scale beams. Eringen's model is chosen for the nonlocal constitutive bending-curvature relationship. The effect of prebuckling deformation is taken into consideration on the basis of the Kirchhoff-Clebsch theory. It is shown that the application of Eringen's model produces small-length scale terms in the nonlocal elastic lateral-torsional buckling moment of a hinged-hinged strip beam. Clearly, the non-local parameter has the effect of reducing the critical lateral-torsional buckling moment. This tendency is consistent with the one observed for the in-plane stability analysis, for the lateral buckling of a hinged-hinged axially loaded column. The lateral buckling solution can be derived from a physically motivated variational principle.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.09-m0982

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 3 : pp. 389–398

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:   

Author Details

N. Challamel

C. M. Wang

  1. Buckling and Postbuckling of a Heavy Compressed Nanorod on Elastic Foundation

    Zorica, Dušan | Challamel, Noël | Janev, Marko | Atanacković, Teodor M.

    Journal of Nanomechanics and Micromechanics, Vol. 7 (2017), Iss. 3

    https://doi.org/10.1061/(ASCE)NM.2153-5477.0000124 [Citations: 7]
  2. Out-of-Plane Buckling of Microstructured Beams: Gradient Elasticity Approach

    Challamel, Noël | Ameur, Mohammed

    Journal of Engineering Mechanics, Vol. 139 (2013), Iss. 8 P.1036

    https://doi.org/10.1061/(ASCE)EM.1943-7889.0000543 [Citations: 5]
  3. Buckling of Nonlocal Columns with Allowance for Selfweight

    Wang, C. M. | Zhang, H. | Challamel, N. | Xiang, Y.

    Journal of Engineering Mechanics, Vol. 142 (2016), Iss. 7

    https://doi.org/10.1061/(ASCE)EM.1943-7889.0001088 [Citations: 27]
  4. Nano- and viscoelastic Beck’s column on elastic foundation

    Atanackovic, Teodor M. | Bouras, Yanni | Zorica, Dusan

    Acta Mechanica, Vol. 226 (2015), Iss. 7 P.2335

    https://doi.org/10.1007/s00707-015-1327-1 [Citations: 13]
  5. Carbon Nanotubes and Nanosensors

    Bibliography

    2012

    https://doi.org/10.1002/9781118562000.biblio [Citations: 0]
  6. Stability of the rotating compressed nano‐rod

    Atanackovic, T.M. | Zorica, D.

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 94 (2014), Iss. 6 P.499

    https://doi.org/10.1002/zamm.201200277 [Citations: 6]
  7. Dynamic Stability of Axially Loaded Nonlocal Rod on Generalized Pasternak Foundation

    Zorica, Dušan | Atanacković, Teodor M. | Vrcelj, Zora | Novaković, Branislava

    Journal of Engineering Mechanics, Vol. 143 (2017), Iss. 5

    https://doi.org/10.1061/(ASCE)EM.1943-7889.0001090 [Citations: 8]
  8. Stability and optimal shape of Pflüger micro/nano beam

    Glavardanov, V.B. | Spasic, D.T. | Atanackovic, T.M.

    International Journal of Solids and Structures, Vol. 49 (2012), Iss. 18 P.2559

    https://doi.org/10.1016/j.ijsolstr.2012.05.016 [Citations: 12]
  9. Rotating Nanorod with Clamped Ends

    Atanackovic, Teodor M. | Novakovic, Branislava N. | Vrcelj, Zora | Zorica, Dusan

    International Journal of Structural Stability and Dynamics, Vol. 15 (2015), Iss. 03 P.1450050

    https://doi.org/10.1142/S0219455414500503 [Citations: 8]
  10. Shape optimization against buckling of micro- and nano-rods

    Atanackovic, Teodor M. | Novakovic, Branislava N. | Vrcelj, Zora

    Archive of Applied Mechanics, Vol. 82 (2012), Iss. 10-11 P.1303

    https://doi.org/10.1007/s00419-012-0661-1 [Citations: 8]
  11. Beneficial effects of the precritical nonlinearities on the lateral buckling of extremely flexible beams

    Luongo, Angelo | Ferretti, Manuel

    International Journal of Non-Linear Mechanics, Vol. 159 (2024), Iss. P.104593

    https://doi.org/10.1016/j.ijnonlinmec.2023.104593 [Citations: 2]
  12. On the use of spring models to analyse the lateral-torsional buckling behaviour of cracked beams

    Challamel, Noël | Andrade, Anísio | Camotim, Dinar

    Thin-Walled Structures, Vol. 73 (2013), Iss. P.121

    https://doi.org/10.1016/j.tws.2013.07.012 [Citations: 8]
  13. Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection

    Xu, S. P. | Xu, M. R. | Wang, C. M.

    Mathematical Problems in Engineering, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/341232 [Citations: 6]
  14. Lateral-Torsional Buckling of Partially Composite Horizontally Layered or Sandwich-Type Beams under Uniform Moment

    Challamel, Noël | Girhammar, Ulf Arne

    Journal of Engineering Mechanics, Vol. 139 (2013), Iss. 8 P.1047

    https://doi.org/10.1061/(ASCE)EM.1943-7889.0000489 [Citations: 7]
  15. Optimal shape of the rotating nano rod

    Janev, Marko | Vrcelj, Zora | Atanackovic, Teodor M.

    International Journal of Non-Linear Mechanics, Vol. 132 (2021), Iss. P.103688

    https://doi.org/10.1016/j.ijnonlinmec.2021.103688 [Citations: 1]