Adaptive $hp$-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations

Adaptive $hp$-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations

Year:    2010

Author:    Pavel Solin, Lenka Dubcova, Ivo Dolezel

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 4 : pp. 518–532

Abstract

Adaptive higher-order finite element methods ($hp$-FEM) are well known for their potential of exceptionally fast (exponential) convergence. However, most $hp$-FEM codes remain in an academic setting due to an extreme algorithmic complexity of $hp$-adaptivity algorithms. This paper aims at simplifying $hp$-adaptivity for $H$(curl)-conforming approximations by presenting a novel technique of arbitrary-level hanging nodes. The technique is described and it is demonstrated numerically that it makes adaptive $hp$-FEM more efficient compared to $hp$-FEM on regular meshes and meshes with one-level hanging nodes.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.10-m1012

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 4 : pp. 518–532

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:   

Author Details

Pavel Solin

Lenka Dubcova

Ivo Dolezel

  1. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Introduction to Finite Element Methods

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_2 [Citations: 2]
  2. Anisotropic multi-level hp-refinement for quadrilateral and triangular meshes

    Zander, Nils | Bériot, Hadrien | Hoff, Claus | Kodl, Petr | Demkowicz, Leszek

    Finite Elements in Analysis and Design, Vol. 203 (2022), Iss. P.103700

    https://doi.org/10.1016/j.finel.2021.103700 [Citations: 5]
  3. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Superconvergence Analysis for Metamaterials

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_5 [Citations: 0]
  4. An Advanced EM-Plasma Simulator Based on the DGTD Algorithm With Dynamic Adaptation and Multirate Time Integration Techniques

    Yan, Su | Qian, Jiwei | Jin, Jian-Ming

    IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4 (2019), Iss. P.76

    https://doi.org/10.1109/JMMCT.2019.2901533 [Citations: 3]
  5. An enhanced transient solver with dynamic p‐adaptation and multirate time integration for electromagnetic and multiphysics simulations

    Yan, Su | Jin, Jian‐Ming

    International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 33 (2020), Iss. 2

    https://doi.org/10.1002/jnm.2626 [Citations: 0]
  6. Adaptive Semi-Structured Mesh Refinement Techniques for the Finite Element Method

    Amor-Martin, Adrian | Garcia-Castillo, Luis E.

    Applied Sciences, Vol. 11 (2021), Iss. 8 P.3683

    https://doi.org/10.3390/app11083683 [Citations: 7]
  7. Approximation Theory XV: San Antonio 2016

    An Adaptive Triangulation Method for Bivariate Spline Solutions of PDEs

    Lai, Ming-Jun | Mersmann, Clayton

    2017

    https://doi.org/10.1007/978-3-319-59912-0_7 [Citations: 3]
  8. Modeling Backward Wave Propagation in Metamaterials by the Finite Element Time-Domain Method

    Huang, Yunqing | Li, Jichun | Yang, Wei

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 1 P.B248

    https://doi.org/10.1137/120869869 [Citations: 34]
  9. Numerical Simulation of a Multi-Frequency Resistivity Logging-While-Drilling Tool Using a Highly Accurate and Adaptive Higher-Order Finite Element Method

    Ma, Zhonghua | Liu, Dejun | Li, Hui | Gao, Xinsheng

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 04 P.439

    https://doi.org/10.4208/aamm.10-m11158 [Citations: 5]
  10. Numerical Study of the Plasma-Lorentz Model in Metamaterials

    Li, Jichun | Huang, Yunqing | Yang, Wei

    Journal of Scientific Computing, Vol. 54 (2013), Iss. 1 P.121

    https://doi.org/10.1007/s10915-012-9608-5 [Citations: 13]
  11. Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes

    Zander, Nils | Bog, Tino | Kollmannsberger, Stefan | Schillinger, Dominik | Rank, Ernst

    Computational Mechanics, Vol. 55 (2015), Iss. 3 P.499

    https://doi.org/10.1007/s00466-014-1118-x [Citations: 69]
  12. Parallelization of the multi-level hp-adaptive finite cell method

    Jomo, John N. | Zander, Nils | Elhaddad, Mohamed | Özcan, Ali | Kollmannsberger, Stefan | Mundani, Ralf-Peter | Rank, Ernst

    Computers & Mathematics with Applications, Vol. 74 (2017), Iss. 1 P.126

    https://doi.org/10.1016/j.camwa.2017.01.004 [Citations: 13]
  13. Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method

    Nagaraja, S. | Elhaddad, M. | Ambati, M. | Kollmannsberger, S. | De Lorenzis, L. | Rank, E.

    Computational Mechanics, Vol. 63 (2019), Iss. 6 P.1283

    https://doi.org/10.1007/s00466-018-1649-7 [Citations: 78]
  14. Modeling Ionic Polymer-Metal Composites with Space-Time Adaptive Multimeshhp-FEM

    Pugal, David | Solin, Pavel | Kim, Kwang J. | Aabloo, Alvo

    Communications in Computational Physics, Vol. 11 (2012), Iss. 1 P.249

    https://doi.org/10.4208/cicp.081110.180311a [Citations: 10]
  15. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    A Matlab Edge Element Code for Metamaterials

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_7 [Citations: 0]
  16. The multi-levelhp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes

    Zander, Nils | Bog, Tino | Elhaddad, Mohamed | Frischmann, Felix | Kollmannsberger, Stefan | Rank, Ernst

    Computer Methods in Applied Mechanics and Engineering, Vol. 310 (2016), Iss. P.252

    https://doi.org/10.1016/j.cma.2016.07.007 [Citations: 53]
  17. GO-MELT: GPU-optimized multilevel execution of LPBF thermal simulations

    Leonor, Joseph P. | Wagner, Gregory J.

    Computer Methods in Applied Mechanics and Engineering, Vol. 426 (2024), Iss. P.116977

    https://doi.org/10.1016/j.cma.2024.116977 [Citations: 2]
  18. A secondary field based hp-Finite Element Method for the simulation of magnetotelluric measurements

    Alvarez-Aramberri, J. | Pardo, D. | Barucq, H.

    Journal of Computational Science, Vol. 11 (2015), Iss. P.137

    https://doi.org/10.1016/j.jocs.2015.02.005 [Citations: 8]
  19. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Time-Domain Finite Element Methods for Metamaterials

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_3 [Citations: 4]
  20. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Perfectly Matched Layers

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_8 [Citations: 0]
  21. An hp-Adaptive Scheme of Discontinuous Galerkin Time-Domain Method With Fast Error Estimation

    Shi, Yan | Wang, Peng | Zhu, Shi Chen | Li, Shuai Peng | Ban, Zhen Guo

    IEEE Transactions on Microwave Theory and Techniques, Vol. 70 (2022), Iss. 8 P.3776

    https://doi.org/10.1109/TMTT.2022.3179006 [Citations: 4]
  22. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Discontinuous Galerkin Methods for Metamaterials

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_4 [Citations: 0]
  23. Application ofh-,p-, andhp-Mesh Adaptation Techniques to theSP3Equations

    Ragusa, Jean C.

    Transport Theory and Statistical Physics, Vol. 39 (2010), Iss. 2-4 P.234

    https://doi.org/10.1080/00411450.2010.533743 [Citations: 5]
  24. Selected aspects of constrained conforming approximation in higher-order FEM

    Solin, Pavel | Cerveny, Jakub

    Journal of Computational and Applied Mathematics, Vol. 427 (2023), Iss. P.115118

    https://doi.org/10.1016/j.cam.2023.115118 [Citations: 0]
  25. hp Adaptive finite elements based on derivative recovery and superconvergence

    Bank, Randolph E. | Nguyen, Hieu

    Computing and Visualization in Science, Vol. 14 (2011), Iss. 6 P.287

    https://doi.org/10.1007/s00791-012-0179-7 [Citations: 9]
  26. Solving the nonstationary Richards equation with adaptive hp-FEM

    Solin, Pavel | Kuraz, Michal

    Advances in Water Resources, Vol. 34 (2011), Iss. 9 P.1062

    https://doi.org/10.1016/j.advwatres.2011.04.020 [Citations: 30]
  27. An adaptive edge finite element method for electromagnetic cloaking simulation

    Li, Jichun | Huang, Yunqing | Yang, Wei

    Journal of Computational Physics, Vol. 249 (2013), Iss. P.216

    https://doi.org/10.1016/j.jcp.2013.04.026 [Citations: 18]
  28. Multi‐level hp‐adaptivity for cohesive fracture modeling

    Zander, Nils | Ruess, Martin | Bog, Tino | Kollmannsberger, Stefan | Rank, Ernst

    International Journal for Numerical Methods in Engineering, Vol. 109 (2017), Iss. 13 P.1723

    https://doi.org/10.1002/nme.5340 [Citations: 17]
  29. Recurrences for Quadrilateral High-Order Finite Elements

    Beuchler, Sven | Haubold, Tim | Pillwein, Veronika

    Mathematics in Computer Science, Vol. 16 (2022), Iss. 4

    https://doi.org/10.1007/s11786-022-00547-2 [Citations: 1]
  30. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Introduction to Metamaterials

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_1 [Citations: 0]
  31. Saturation estimates for hp-finite element methods

    Bank, Randolph E. | Parsania, Asieh | Sauter, Stefan

    Computing and Visualization in Science, Vol. 16 (2013), Iss. 5 P.195

    https://doi.org/10.1007/s00791-015-0234-2 [Citations: 9]
  32. A Dynamic $p$ -Adaptive DGTD Algorithm for Electromagnetic and Multiphysics Simulations

    Yan, Su | Jin, Jian-Ming

    IEEE Transactions on Antennas and Propagation, Vol. 65 (2017), Iss. 5 P.2446

    https://doi.org/10.1109/TAP.2017.2676724 [Citations: 24]
  33. Efficient large scale electromagnetic simulations using dynamically adapted meshes with the discontinuous Galerkin method

    Schnepp, Sascha M. | Weiland, Thomas

    Journal of Computational and Applied Mathematics, Vol. 236 (2012), Iss. 18 P.4909

    https://doi.org/10.1016/j.cam.2011.12.005 [Citations: 28]
  34. Error-driven dynamicalhp-meshes with the Discontinuous Galerkin Method for three-dimensional wave propagation problems

    Schnepp, Sascha M.

    Journal of Computational and Applied Mathematics, Vol. 270 (2014), Iss. P.353

    https://doi.org/10.1016/j.cam.2013.12.038 [Citations: 14]
  35. An Adaptive DGTD Algorithm Based on Hierarchical Vector Basis Function

    Zhou, Yuanguo | Huang, Rongrong | Wang, Shuqi | Ren, Qiang | Zhang, Wei | Yang, Guoqing | Liu, Qing Huo

    IEEE Transactions on Antennas and Propagation, Vol. 69 (2021), Iss. 12 P.9038

    https://doi.org/10.1109/TAP.2021.3090578 [Citations: 7]
  36. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    Simulations of Wave Propagation in Metamaterials

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_9 [Citations: 0]
  37. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM

    Liu, De-Jun | Ma, Zhong-Hua | Xing, Xiao-Nan | Li, Hui | Guo, Zhi-Yong

    Applied Geophysics, Vol. 10 (2013), Iss. 1 P.97

    https://doi.org/10.1007/s11770-013-0368-2 [Citations: 3]
  38. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    Xu, Wei | Ke, Shi-Zhen | Li, An-Zong | Chen, Peng | Zhu, Jun | Zhang, Wei

    Applied Geophysics, Vol. 11 (2014), Iss. 1 P.31

    https://doi.org/10.1007/s11770-014-0417-5 [Citations: 12]
  39. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

    A Posteriori Error Estimation

    Li, Jichun | Huang, Yunqing

    2013

    https://doi.org/10.1007/978-3-642-33789-5_6 [Citations: 0]