Lattice Boltzmann Method for Reacting Flows in Porous Media

Lattice Boltzmann Method for Reacting Flows in Porous Media

Year:    2010

Author:    Qinjun Kang, Peter C. Lichtner, David R. Janecky

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 5 : pp. 545–563

Abstract

We review recent developments in lattice Boltzmann method for reacting flows in porous media.  We present the lattice Boltzmann approaches for incompressible flow, solute transport and chemical reactions in both the pore space and at the fluid/solid interfaces. We discuss in detail the methods to update solid phase when significant mass transfer between solids and fluids is involved due to dissolution and/or precipitation. Applications in different areas are presented and perspectives of applying this method to a few important fields are discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.10-m10S02

Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 5 : pp. 545–563

Published online:    2010-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:   

Author Details

Qinjun Kang

Peter C. Lichtner

David R. Janecky

  1. Simulation of the Effect of Various Operating Parameters for the Effective Separation of Carbon Dioxide into an Aqueous Caustic Soda Solution in a Packed Bed Using Lattice Boltzmann Simulation

    Sen, Dwaipayan | Sarkar, Santanu | Bhattacharjee, Sangita | Bandopadhya, Sibdas | Ghosh, Sourja | Bhattacharjee, Chiranjib

    Industrial & Engineering Chemistry Research, Vol. 52 (2013), Iss. 4 P.1731

    https://doi.org/10.1021/ie301954c [Citations: 4]
  2. Numerical simulations of surface reaction in porous media with lattice Boltzmann

    Machado, Raúl

    Chemical Engineering Science, Vol. 69 (2012), Iss. 1 P.628

    https://doi.org/10.1016/j.ces.2011.11.037 [Citations: 36]
  3. A review on reactive transport model and porosity evolution in the porous media

    Baqer, Yousef | Chen, Xiaohui

    Environmental Science and Pollution Research, Vol. 29 (2022), Iss. 32 P.47873

    https://doi.org/10.1007/s11356-022-20466-w [Citations: 22]
  4. A lattice Boltzmann model for the conjugate heat transfer

    Yue, Liqing | Chai, Zhenhua | Wang, Lei | Shi, Baochang

    International Journal of Heat and Mass Transfer, Vol. 165 (2021), Iss. P.120682

    https://doi.org/10.1016/j.ijheatmasstransfer.2020.120682 [Citations: 13]
  5. Direct simulation of the influence of the pore structure on the diffusion process in porous media

    Yong, Yumei | Lou, Xiaojun | Li, Sha | Yang, Chao | Yin, Xiaolong

    Computers & Mathematics with Applications, Vol. 67 (2014), Iss. 2 P.412

    https://doi.org/10.1016/j.camwa.2013.08.032 [Citations: 42]
  6. Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations

    Yang, Xiaofan | Scheibe, Timothy D. | Richmond, Marshall C. | Perkins, William A. | Vogt, Sarah J. | Codd, Sarah L. | Seymour, Joseph D. | McKinley, Matthew I.

    Advances in Water Resources, Vol. 54 (2013), Iss. P.228

    https://doi.org/10.1016/j.advwatres.2013.01.009 [Citations: 63]
  7. Characterization of dynamic adsorption regimes in synthetic and natural porous structures using lattice Boltzmann simulations

    Zakirov, T.R. | Varfolomeev, M.A. | Yuan, C.

    Chemical Engineering Research and Design, Vol. 189 (2023), Iss. P.14

    https://doi.org/10.1016/j.cherd.2022.10.046 [Citations: 9]
  8. Calibrating Lattice Boltzmann flow simulations and estimating uncertainty in the permeability of complex porous media

    Hosa, Aleksandra | Curtis, Andrew | Wood, Rachel

    Advances in Water Resources, Vol. 94 (2016), Iss. P.60

    https://doi.org/10.1016/j.advwatres.2016.04.020 [Citations: 16]
  9. Step propagation controls pore shape evolution when mineral walls dissolve under saturation gradients

    Rodrigues, Nathann Teixeira | Carrasco, Ismael S.S. | Aarão Reis, Fábio D.A.

    Geochimica et Cosmochimica Acta, Vol. 379 (2024), Iss. P.219

    https://doi.org/10.1016/j.gca.2024.05.028 [Citations: 0]
  10. Precipitation, dissolution, and ion exchange processes coupled with a lattice Boltzmann advection diffusion solver

    Hiorth, A. | Jettestuen, E. | Cathles, L.M. | Madland, M.V.

    Geochimica et Cosmochimica Acta, Vol. 104 (2013), Iss. P.99

    https://doi.org/10.1016/j.gca.2012.11.019 [Citations: 27]
  11. Counter-extrapolation method for conjugate heat and mass transfer with interfacial discontinuity

    Wang, Zimeng | Colin, Fabrice | Le, Guigao | Zhang, Junfeng

    International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 (2017), Iss. 10 P.2231

    https://doi.org/10.1108/HFF-10-2016-0422 [Citations: 13]
  12. Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method

    Liu, Yingzu | Xia, Jun | Wan, Kaidi | Vervisch, Luc | Wang, Zhihua | Zhao, Hua | Cen, Kefa

    Combustion and Flame, Vol. 211 (2020), Iss. P.325

    https://doi.org/10.1016/j.combustflame.2019.10.005 [Citations: 13]
  13. A versatile pore-scale multicomponent reactive transport approach based on lattice Boltzmann method: Application to portlandite dissolution

    Patel, Ravi A. | Perko, Janez | Jacques, Diederik | De Schutter, Geert | Van Breugel, Klaas | Ye, Guang

    Physics and Chemistry of the Earth, Parts A/B/C, Vol. 70-71 (2014), Iss. P.127

    https://doi.org/10.1016/j.pce.2014.03.001 [Citations: 36]
  14. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    Molins, Sergi | Trebotich, David | Steefel, Carl I. | Shen, Chaopeng

    Water Resources Research, Vol. 48 (2012), Iss. 3

    https://doi.org/10.1029/2011WR011404 [Citations: 227]
  15. Pore-scale study of dynamic adsorption of a water-soluble catalyst during drainage displacement in porous media using lattice Boltzmann simulations

    Zakirov, T.R. | Mikhailova, A.N. | Varfolomeev, M.A. | Yuan, C.

    International Communications in Heat and Mass Transfer, Vol. 145 (2023), Iss. P.106810

    https://doi.org/10.1016/j.icheatmasstransfer.2023.106810 [Citations: 4]
  16. Pore-scale study of the effects of surface roughness on relative permeability of rock fractures using lattice Boltzmann method

    Yi, Jie | Xing, Huilin | Wang, Junjian | Xia, Zhaohui | Jing, Yu

    Chemical Engineering Science, Vol. 209 (2019), Iss. P.115178

    https://doi.org/10.1016/j.ces.2019.115178 [Citations: 26]
  17. Effect of static porosity fluctuations on reactive transport in a porous medium

    L’Heureux, Ivan

    Physica A: Statistical Mechanics and its Applications, Vol. 491 (2018), Iss. P.425

    https://doi.org/10.1016/j.physa.2017.09.010 [Citations: 1]
  18. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review

    He, Ya-Ling | Liu, Qing | Li, Qing | Tao, Wen-Quan

    International Journal of Heat and Mass Transfer, Vol. 129 (2019), Iss. P.160

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.135 [Citations: 194]
  19. Numerical study of mixing behavior with chemical reactions in micro-channels by a lattice Boltzmann method

    Wang, Wentan | Zhao, Shufang | Shao, Ting | Zhang, Mengxue | Jin, Yong | Cheng, Yi

    Chemical Engineering Science, Vol. 84 (2012), Iss. P.148

    https://doi.org/10.1016/j.ces.2012.08.028 [Citations: 18]
  20. A multiscale study of density-driven flow with dissolution in porous media

    Meng, Xuhui | Sun, Haoran | Guo, Zhaoli | Yang, Xiaofan

    Advances in Water Resources, Vol. 142 (2020), Iss. P.103640

    https://doi.org/10.1016/j.advwatres.2020.103640 [Citations: 7]
  21. Effects of temperature-dependent properties on natural convection of nanofluids in a partially heated cubic enclosure

    Wang, Lei | Shi, Baochang | Chai, Zhenhua

    Applied Thermal Engineering, Vol. 128 (2018), Iss. P.204

    https://doi.org/10.1016/j.applthermaleng.2017.09.006 [Citations: 29]
  22. A molecular collision based Lattice Boltzmann method for simulation of homogeneous and heterogeneous reactions

    Abdollahzadeh, Yousef | Mansourpour, Zahra | Moqtaderi, Hamed | Ajayebi, Seyed Nader | Montazeri, Mahyar Mohaghegh

    Chemical Engineering Research and Design, Vol. 136 (2018), Iss. P.456

    https://doi.org/10.1016/j.cherd.2018.06.004 [Citations: 5]
  23. Contaminant Flow and Transport Simulation in Cracked Porous Media Using Locally Conservative Schemes

    Song, Pu | Sun, Shuyu

    Advances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 04 P.389

    https://doi.org/10.4208/aamm.10-m1108 [Citations: 8]
  24. Coupled fine-scale modeling of the wettability effects: Deformation and fracturing

    Davydzenka, Tsimur | Fagbemi, Samuel | Tahmasebi, Pejman

    Physics of Fluids, Vol. 32 (2020), Iss. 8

    https://doi.org/10.1063/5.0018455 [Citations: 12]
  25. Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study

    Ramazani Sarbandi, Iman | Taslimi, Melika Sadat | Bazargan, Vahid

    SN Applied Sciences, Vol. 2 (2020), Iss. 11

    https://doi.org/10.1007/s42452-020-03630-0 [Citations: 3]
  26. Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples

    Balashov, V. A. | Savenkov, E. B. | Chetverushkin, B. N.

    Mathematical Models and Computer Simulations, Vol. 12 (2020), Iss. 2 P.110

    https://doi.org/10.1134/S2070048220020027 [Citations: 5]
  27. Numerically accelerated pore-scale equilibrium dissolution

    Perko, Janez | Jacques, Diederik

    Journal of Contaminant Hydrology, Vol. 220 (2019), Iss. P.119

    https://doi.org/10.1016/j.jconhyd.2018.12.006 [Citations: 5]
  28. Lattice Boltzmann Modeling of Classic Solute Transport Boundary Value Problems

    Anwar, Shadab | Thorne, Danny | Sukop, Michael C.

    Vadose Zone Journal, Vol. 12 (2013), Iss. 4 P.1

    https://doi.org/10.2136/vzj2012.0192 [Citations: 3]
  29. Local reactive boundary scheme for irregular geometries in lattice Boltzmann method

    Ju, Long | Zhang, Chunhua | Guo, Zhaoli

    International Journal of Heat and Mass Transfer, Vol. 150 (2020), Iss. P.119314

    https://doi.org/10.1016/j.ijheatmasstransfer.2020.119314 [Citations: 14]
  30. Вычислительные технологии программного комплекса DiMP-Hydro для моделирования микротечений

    Балашов, Владислав Александрович | Balashov, Vladislav Aleksandrovich | Савенков, Евгений Борисович | Savenkov, Evgenii Borisovich | Четверушкин, Борис Николаевич | Chetverushkin, Boris Nikolaevich

    Математическое моделирование, Vol. 31 (2019), Iss. 7 P.21

    https://doi.org/10.1134/S0234087919070025 [Citations: 5]
  31. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport

    Perko, Janez | Patel, Ravi A.

    Physical Review E, Vol. 89 (2014), Iss. 5

    https://doi.org/10.1103/PhysRevE.89.053309 [Citations: 30]
  32. A pore-level 3D lattice Boltzmann simulation of mass transport and reaction in catalytic particles used for methane synthesis

    Khatoonabadi, Meysam | Prasianakis, Nikolaos I. | Mantzaras, John

    International Journal of Heat and Mass Transfer, Vol. 221 (2024), Iss. P.125025

    https://doi.org/10.1016/j.ijheatmasstransfer.2023.125025 [Citations: 3]
  33. Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach

    Paradis, Hedvig | Andersson, Martin | Sundén, Bengt

    Heat and Mass Transfer, Vol. 52 (2016), Iss. 8 P.1529

    https://doi.org/10.1007/s00231-015-1670-8 [Citations: 14]
  34. Boundary scheme for linear heterogeneous surface reactions in the lattice Boltzmann method

    Meng, Xuhui | Guo, Zhaoli

    Physical Review E, Vol. 94 (2016), Iss. 5

    https://doi.org/10.1103/PhysRevE.94.053307 [Citations: 20]
  35. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method

    Yin, Xuewen | Zhang, Junfeng

    Journal of Computational Physics, Vol. 231 (2012), Iss. 11 P.4295

    https://doi.org/10.1016/j.jcp.2012.02.014 [Citations: 95]
  36. Hybrid multiscale simulation of a mixing-controlled reaction

    Scheibe, Timothy D. | Schuchardt, Karen | Agarwal, Khushbu | Chase, Jared | Yang, Xiaofan | Palmer, Bruce J. | Tartakovsky, Alexandre M. | Elsethagen, Todd | Redden, George

    Advances in Water Resources, Vol. 83 (2015), Iss. P.228

    https://doi.org/10.1016/j.advwatres.2015.06.006 [Citations: 24]
  37. Catalytic gasification of a single coal char particle: An experimental and simulation study

    Liu, Zhuoran | Wang, Xingjun | Chen, Qian | Li, Hongxia | Guo, Qinghua | Yu, Guangsuo | Liu, Haifeng | Wang, Fuchen

    Carbon Resources Conversion, Vol. 8 (2025), Iss. 1 P.100296

    https://doi.org/10.1016/j.crcon.2024.100296 [Citations: 0]
  38. Micro-continuum approach for mineral precipitation

    Yang, Fengchang | Stack, Andrew G. | Starchenko, Vitalii

    Scientific Reports, Vol. 11 (2021), Iss. 1

    https://doi.org/10.1038/s41598-021-82807-y [Citations: 15]
  39. Pore-space alteration induced by brine acidification in subsurface geologic formations

    Ovaysi, Saeed | Piri, Mohammad

    Water Resources Research, Vol. 50 (2014), Iss. 1 P.440

    https://doi.org/10.1002/2013WR014289 [Citations: 16]
  40. Effects of Different Motion Parameters on the Interaction of Fish School Subsystems

    Zhang, Feihu | Pang, Jianhua | Wu, Zongduo | Liu, Junkai | Zhong, Yifei

    Biomimetics, Vol. 8 (2023), Iss. 7 P.510

    https://doi.org/10.3390/biomimetics8070510 [Citations: 5]
  41. A concise python implementation of the lattice Boltzmann method on HPC for geo-fluid flow

    Mora, Peter | Morra, Gabriele | Yuen, David A

    Geophysical Journal International, Vol. 220 (2020), Iss. 1 P.682

    https://doi.org/10.1093/gji/ggz423 [Citations: 10]
  42. Numerical Study of Mineral Nucleation and Growth on a Substrate

    Yang, Fengchang | Yuan, Ke | Stack, Andrew G. | Starchenko, Vitalii

    ACS Earth and Space Chemistry, Vol. 6 (2022), Iss. 7 P.1655

    https://doi.org/10.1021/acsearthspacechem.1c00376 [Citations: 10]
  43. Lattice Boltzmann model for the convection-diffusion equation

    Chai, Zhenhua | Zhao, T. S.

    Physical Review E, Vol. 87 (2013), Iss. 6

    https://doi.org/10.1103/PhysRevE.87.063309 [Citations: 169]
  44. Unified mesoscopic modeling and GPU-accelerated computational method for image-based pore-scale porous media flows

    An, Senyou | (Whitney) Yu, Huidan | Wang, Zhiqiang | Kapadia, Behram | Yao, Jun

    International Journal of Heat and Mass Transfer, Vol. 115 (2017), Iss. P.1192

    https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.099 [Citations: 35]
  45. The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface

    Ashorynejad, Hamid Reza | Javaherdeh, Koroush | Van den Akker, Harry E.A.

    International Journal of Hydrogen Energy, Vol. 41 (2016), Iss. 32 P.14239

    https://doi.org/10.1016/j.ijhydene.2016.05.291 [Citations: 51]
  46. Modeling flavor development in cereal based foams under thermal treatment

    Mack, Simone | Hussein, Mohamed A. | Becker, Thomas

    Procedia Food Science, Vol. 1 (2011), Iss. P.1223

    https://doi.org/10.1016/j.profoo.2011.09.182 [Citations: 1]
  47. Coupling of reaction and hydrodynamics around a reacting block modeled by Lattice Boltzmann Method (LBM)

    Mishra, Sudib Kumar | De, Ashoke

    Computers & Fluids, Vol. 71 (2013), Iss. P.91

    https://doi.org/10.1016/j.compfluid.2012.10.011 [Citations: 17]
  48. Identification of reaction rate parameters from uncertain spatially distributed concentration data using gradient-based PDE constrained optimization

    Ito, Shota | Jeßberger, Julius | Simonis, Stephan | Bukreev, Fedor | Kummerländer, Adrian | Zimmermann, Alexander | Thäter, Gudrun | Pesch, Georg R. | Thöming, Jorg | Krause, Mathias J.

    Computers & Mathematics with Applications, Vol. 167 (2024), Iss. P.249

    https://doi.org/10.1016/j.camwa.2024.05.026 [Citations: 1]
  49. An Efficient Method of Generating and Characterizing Filter Substrates for Lattice Boltzmann Analysis

    Murdock, John Ryan | Ibrahim, Aamir | Yang, Song-Lin

    Journal of Fluids Engineering, Vol. 140 (2018), Iss. 4

    https://doi.org/10.1115/1.4038167 [Citations: 5]
  50. Phase-field modeling of coupled reactive transport and pore structure evolution due to mineral dissolution in porous media

    Li, Heng | Wang, Fugang | Wang, Yaohui | Yuan, Yilong | Feng, Guanhong | Tian, Hailong | Xu, Tianfu

    Journal of Hydrology, Vol. 619 (2023), Iss. P.129363

    https://doi.org/10.1016/j.jhydrol.2023.129363 [Citations: 10]
  51. Novel regimes of calcium carbonate dissolution in micron-scale confined spaces

    Xu, Jianping | Balhoff, Matthew T.

    Advances in Water Resources, Vol. 164 (2022), Iss. P.104200

    https://doi.org/10.1016/j.advwatres.2022.104200 [Citations: 6]
  52. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method

    Chai, Zhenhua | Zhao, T. S.

    Physical Review E, Vol. 90 (2014), Iss. 1

    https://doi.org/10.1103/PhysRevE.90.013305 [Citations: 53]
  53. Diffusion velocity lattice Boltzmann formulation applied to transport in macroscopic porous media

    Perko, Janez | Patel, Ravi A.

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 12 P.1441006

    https://doi.org/10.1142/S012918311441006X [Citations: 1]
  54. Pore‐scale study of reactive transfer process involving coke deposition via lattice Boltzmann method

    Wang, Shuai | Yang, Xuesong | He, Yurong

    AIChE Journal, Vol. 68 (2022), Iss. 3

    https://doi.org/10.1002/aic.17478 [Citations: 2]
  55. Plasma-induced catalysis: towards a numerical approach

    Li, Haijing | Toschi, Federico

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190396

    https://doi.org/10.1098/rsta.2019.0396 [Citations: 3]
  56. Lattice Boltzmann Simulation of Magnetic Field Effect on Natural Convection of Power-Law Nanofluids in Rectangular Enclosures

    Wang, Lei | Chai, Zhenhua | Shi, Baochang

    Advances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 5 P.1094

    https://doi.org/10.4208/aamm.OA-2016-0066 [Citations: 11]
  57. Recent progress in multi‐scale modeling and simulation of flow and solute transport in porous media

    Yang, Xiaofan | Sun, Haoran | Yang, Yurong | Liu, Yuanyuan | Li, Xiaoyan

    WIREs Water, Vol. 8 (2021), Iss. 6

    https://doi.org/10.1002/wat2.1561 [Citations: 15]
  58. Improved phase-field-based lattice Boltzmann method for thermocapillary flow

    Yue, Liqing | Chai, Zhenhua | Wang, Huili | Shi, Baochang

    Physical Review E, Vol. 105 (2022), Iss. 1

    https://doi.org/10.1103/PhysRevE.105.015314 [Citations: 15]
  59. Lattice Boltzmann method investigation of a reactive electro-kinetic flow in porous media: towards a phenomenological model

    Li, Haijing | Clercx, Herman J. H. | Toschi, Federico

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379 (2021), Iss. 2208

    https://doi.org/10.1098/rsta.2020.0398 [Citations: 2]
  60. Impact of saturation on mass transfer rate between mobile and immobile waters in solute transport within aggregated soils

    Hu, Wulong | Huang, Ning | Zhang, Xiaoxian

    Journal of Hydrology, Vol. 519 (2014), Iss. P.3557

    https://doi.org/10.1016/j.jhydrol.2014.10.057 [Citations: 19]
  61. A lattice-Boltzmann study of permeability-porosity relationships and mineral precipitation patterns in fractured porous media

    Ahkami, Mehrdad | Parmigiani, Andrea | Di Palma, Paolo Roberto | Saar, Martin O. | Kong, Xiang-Zhao

    Computational Geosciences, Vol. 24 (2020), Iss. 5 P.1865

    https://doi.org/10.1007/s10596-019-09926-4 [Citations: 20]
  62. A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation

    Huber, Christian | Shafei, Babak | Parmigiani, Andrea

    Geochimica et Cosmochimica Acta, Vol. 124 (2014), Iss. P.109

    https://doi.org/10.1016/j.gca.2013.09.003 [Citations: 74]
  63. Application of Regularized Hydrodynamic Equations for Direct Numerical Simulation of Micro-Scale Flows in Core Samples

    Chetverushkin, Boris | Balashov, Vladislav | Kuleshov, Andrey | Savenkov, Evgeny | Mastorakis, N. | Mladenov, V. | Bulucea, A.

    MATEC Web of Conferences, Vol. 210 (2018), Iss. P.04026

    https://doi.org/10.1051/matecconf/201821004026 [Citations: 0]
  64. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution

    Wang, Lei | Huang, Changsheng | Yang, Xuguang | Chai, Zhenhua | Shi, Baochang

    International Journal of Heat and Mass Transfer, Vol. 128 (2019), Iss. P.688

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.007 [Citations: 67]