Year: 2010
Author: Qinjun Kang, Peter C. Lichtner, David R. Janecky
Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 5 : pp. 545–563
Abstract
We review recent developments in lattice Boltzmann method for reacting flows in porous media. We present the lattice Boltzmann approaches for incompressible flow, solute transport and chemical reactions in both the pore space and at the fluid/solid interfaces. We discuss in detail the methods to update solid phase when significant mass transfer between solids and fluids is involved due to dissolution and/or precipitation. Applications in different areas are presented and perspectives of applying this method to a few important fields are discussed.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/aamm.10-m10S02
Advances in Applied Mathematics and Mechanics, Vol. 2 (2010), Iss. 5 : pp. 545–563
Published online: 2010-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 19
Author Details
-
Simulation of the Effect of Various Operating Parameters for the Effective Separation of Carbon Dioxide into an Aqueous Caustic Soda Solution in a Packed Bed Using Lattice Boltzmann Simulation
Sen, Dwaipayan | Sarkar, Santanu | Bhattacharjee, Sangita | Bandopadhya, Sibdas | Ghosh, Sourja | Bhattacharjee, ChiranjibIndustrial & Engineering Chemistry Research, Vol. 52 (2013), Iss. 4 P.1731
https://doi.org/10.1021/ie301954c [Citations: 4] -
Numerical simulations of surface reaction in porous media with lattice Boltzmann
Machado, Raúl
Chemical Engineering Science, Vol. 69 (2012), Iss. 1 P.628
https://doi.org/10.1016/j.ces.2011.11.037 [Citations: 36] -
A review on reactive transport model and porosity evolution in the porous media
Baqer, Yousef | Chen, XiaohuiEnvironmental Science and Pollution Research, Vol. 29 (2022), Iss. 32 P.47873
https://doi.org/10.1007/s11356-022-20466-w [Citations: 22] -
A lattice Boltzmann model for the conjugate heat transfer
Yue, Liqing | Chai, Zhenhua | Wang, Lei | Shi, BaochangInternational Journal of Heat and Mass Transfer, Vol. 165 (2021), Iss. P.120682
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120682 [Citations: 13] -
Direct simulation of the influence of the pore structure on the diffusion process in porous media
Yong, Yumei | Lou, Xiaojun | Li, Sha | Yang, Chao | Yin, XiaolongComputers & Mathematics with Applications, Vol. 67 (2014), Iss. 2 P.412
https://doi.org/10.1016/j.camwa.2013.08.032 [Citations: 42] -
Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations
Yang, Xiaofan | Scheibe, Timothy D. | Richmond, Marshall C. | Perkins, William A. | Vogt, Sarah J. | Codd, Sarah L. | Seymour, Joseph D. | McKinley, Matthew I.Advances in Water Resources, Vol. 54 (2013), Iss. P.228
https://doi.org/10.1016/j.advwatres.2013.01.009 [Citations: 63] -
Characterization of dynamic adsorption regimes in synthetic and natural porous structures using lattice Boltzmann simulations
Zakirov, T.R. | Varfolomeev, M.A. | Yuan, C.Chemical Engineering Research and Design, Vol. 189 (2023), Iss. P.14
https://doi.org/10.1016/j.cherd.2022.10.046 [Citations: 9] -
Calibrating Lattice Boltzmann flow simulations and estimating uncertainty in the permeability of complex porous media
Hosa, Aleksandra | Curtis, Andrew | Wood, RachelAdvances in Water Resources, Vol. 94 (2016), Iss. P.60
https://doi.org/10.1016/j.advwatres.2016.04.020 [Citations: 16] -
Step propagation controls pore shape evolution when mineral walls dissolve under saturation gradients
Rodrigues, Nathann Teixeira | Carrasco, Ismael S.S. | Aarão Reis, Fábio D.A.Geochimica et Cosmochimica Acta, Vol. 379 (2024), Iss. P.219
https://doi.org/10.1016/j.gca.2024.05.028 [Citations: 0] -
Precipitation, dissolution, and ion exchange processes coupled with a lattice Boltzmann advection diffusion solver
Hiorth, A. | Jettestuen, E. | Cathles, L.M. | Madland, M.V.Geochimica et Cosmochimica Acta, Vol. 104 (2013), Iss. P.99
https://doi.org/10.1016/j.gca.2012.11.019 [Citations: 27] -
Counter-extrapolation method for conjugate heat and mass transfer with interfacial discontinuity
Wang, Zimeng | Colin, Fabrice | Le, Guigao | Zhang, JunfengInternational Journal of Numerical Methods for Heat & Fluid Flow, Vol. 27 (2017), Iss. 10 P.2231
https://doi.org/10.1108/HFF-10-2016-0422 [Citations: 13] -
Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method
Liu, Yingzu | Xia, Jun | Wan, Kaidi | Vervisch, Luc | Wang, Zhihua | Zhao, Hua | Cen, KefaCombustion and Flame, Vol. 211 (2020), Iss. P.325
https://doi.org/10.1016/j.combustflame.2019.10.005 [Citations: 13] -
A versatile pore-scale multicomponent reactive transport approach based on lattice Boltzmann method: Application to portlandite dissolution
Patel, Ravi A. | Perko, Janez | Jacques, Diederik | De Schutter, Geert | Van Breugel, Klaas | Ye, GuangPhysics and Chemistry of the Earth, Parts A/B/C, Vol. 70-71 (2014), Iss. P.127
https://doi.org/10.1016/j.pce.2014.03.001 [Citations: 36] -
An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation
Molins, Sergi | Trebotich, David | Steefel, Carl I. | Shen, ChaopengWater Resources Research, Vol. 48 (2012), Iss. 3
https://doi.org/10.1029/2011WR011404 [Citations: 227] -
Pore-scale study of dynamic adsorption of a water-soluble catalyst during drainage displacement in porous media using lattice Boltzmann simulations
Zakirov, T.R. | Mikhailova, A.N. | Varfolomeev, M.A. | Yuan, C.International Communications in Heat and Mass Transfer, Vol. 145 (2023), Iss. P.106810
https://doi.org/10.1016/j.icheatmasstransfer.2023.106810 [Citations: 4] -
Pore-scale study of the effects of surface roughness on relative permeability of rock fractures using lattice Boltzmann method
Yi, Jie | Xing, Huilin | Wang, Junjian | Xia, Zhaohui | Jing, YuChemical Engineering Science, Vol. 209 (2019), Iss. P.115178
https://doi.org/10.1016/j.ces.2019.115178 [Citations: 26] -
Effect of static porosity fluctuations on reactive transport in a porous medium
L’Heureux, Ivan
Physica A: Statistical Mechanics and its Applications, Vol. 491 (2018), Iss. P.425
https://doi.org/10.1016/j.physa.2017.09.010 [Citations: 1] -
Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review
He, Ya-Ling | Liu, Qing | Li, Qing | Tao, Wen-QuanInternational Journal of Heat and Mass Transfer, Vol. 129 (2019), Iss. P.160
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.135 [Citations: 194] -
Numerical study of mixing behavior with chemical reactions in micro-channels by a lattice Boltzmann method
Wang, Wentan | Zhao, Shufang | Shao, Ting | Zhang, Mengxue | Jin, Yong | Cheng, YiChemical Engineering Science, Vol. 84 (2012), Iss. P.148
https://doi.org/10.1016/j.ces.2012.08.028 [Citations: 18] -
A multiscale study of density-driven flow with dissolution in porous media
Meng, Xuhui | Sun, Haoran | Guo, Zhaoli | Yang, XiaofanAdvances in Water Resources, Vol. 142 (2020), Iss. P.103640
https://doi.org/10.1016/j.advwatres.2020.103640 [Citations: 7] -
Effects of temperature-dependent properties on natural convection of nanofluids in a partially heated cubic enclosure
Wang, Lei | Shi, Baochang | Chai, ZhenhuaApplied Thermal Engineering, Vol. 128 (2018), Iss. P.204
https://doi.org/10.1016/j.applthermaleng.2017.09.006 [Citations: 29] -
A molecular collision based Lattice Boltzmann method for simulation of homogeneous and heterogeneous reactions
Abdollahzadeh, Yousef | Mansourpour, Zahra | Moqtaderi, Hamed | Ajayebi, Seyed Nader | Montazeri, Mahyar MohagheghChemical Engineering Research and Design, Vol. 136 (2018), Iss. P.456
https://doi.org/10.1016/j.cherd.2018.06.004 [Citations: 5] -
Contaminant Flow and Transport Simulation in Cracked Porous Media Using Locally Conservative Schemes
Song, Pu | Sun, ShuyuAdvances in Applied Mathematics and Mechanics, Vol. 4 (2012), Iss. 04 P.389
https://doi.org/10.4208/aamm.10-m1108 [Citations: 8] -
Coupled fine-scale modeling of the wettability effects: Deformation and fracturing
Davydzenka, Tsimur | Fagbemi, Samuel | Tahmasebi, PejmanPhysics of Fluids, Vol. 32 (2020), Iss. 8
https://doi.org/10.1063/5.0018455 [Citations: 12] -
Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study
Ramazani Sarbandi, Iman | Taslimi, Melika Sadat | Bazargan, VahidSN Applied Sciences, Vol. 2 (2020), Iss. 11
https://doi.org/10.1007/s42452-020-03630-0 [Citations: 3] -
Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples
Balashov, V. A. | Savenkov, E. B. | Chetverushkin, B. N.Mathematical Models and Computer Simulations, Vol. 12 (2020), Iss. 2 P.110
https://doi.org/10.1134/S2070048220020027 [Citations: 5] -
Numerically accelerated pore-scale equilibrium dissolution
Perko, Janez | Jacques, DiederikJournal of Contaminant Hydrology, Vol. 220 (2019), Iss. P.119
https://doi.org/10.1016/j.jconhyd.2018.12.006 [Citations: 5] -
Lattice Boltzmann Modeling of Classic Solute Transport Boundary Value Problems
Anwar, Shadab | Thorne, Danny | Sukop, Michael C.Vadose Zone Journal, Vol. 12 (2013), Iss. 4 P.1
https://doi.org/10.2136/vzj2012.0192 [Citations: 3] -
Local reactive boundary scheme for irregular geometries in lattice Boltzmann method
Ju, Long | Zhang, Chunhua | Guo, ZhaoliInternational Journal of Heat and Mass Transfer, Vol. 150 (2020), Iss. P.119314
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119314 [Citations: 14] -
Вычислительные технологии программного комплекса DiMP-Hydro для моделирования микротечений
Балашов, Владислав Александрович | Balashov, Vladislav Aleksandrovich | Савенков, Евгений Борисович | Savenkov, Evgenii Borisovich | Четверушкин, Борис Николаевич | Chetverushkin, Boris NikolaevichМатематическое моделирование, Vol. 31 (2019), Iss. 7 P.21
https://doi.org/10.1134/S0234087919070025 [Citations: 5] -
Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport
Perko, Janez | Patel, Ravi A.Physical Review E, Vol. 89 (2014), Iss. 5
https://doi.org/10.1103/PhysRevE.89.053309 [Citations: 30] -
A pore-level 3D lattice Boltzmann simulation of mass transport and reaction in catalytic particles used for methane synthesis
Khatoonabadi, Meysam | Prasianakis, Nikolaos I. | Mantzaras, JohnInternational Journal of Heat and Mass Transfer, Vol. 221 (2024), Iss. P.125025
https://doi.org/10.1016/j.ijheatmasstransfer.2023.125025 [Citations: 3] -
Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach
Paradis, Hedvig | Andersson, Martin | Sundén, BengtHeat and Mass Transfer, Vol. 52 (2016), Iss. 8 P.1529
https://doi.org/10.1007/s00231-015-1670-8 [Citations: 14] -
Boundary scheme for linear heterogeneous surface reactions in the lattice Boltzmann method
Meng, Xuhui | Guo, ZhaoliPhysical Review E, Vol. 94 (2016), Iss. 5
https://doi.org/10.1103/PhysRevE.94.053307 [Citations: 20] -
An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method
Yin, Xuewen | Zhang, JunfengJournal of Computational Physics, Vol. 231 (2012), Iss. 11 P.4295
https://doi.org/10.1016/j.jcp.2012.02.014 [Citations: 95] -
Hybrid multiscale simulation of a mixing-controlled reaction
Scheibe, Timothy D. | Schuchardt, Karen | Agarwal, Khushbu | Chase, Jared | Yang, Xiaofan | Palmer, Bruce J. | Tartakovsky, Alexandre M. | Elsethagen, Todd | Redden, GeorgeAdvances in Water Resources, Vol. 83 (2015), Iss. P.228
https://doi.org/10.1016/j.advwatres.2015.06.006 [Citations: 24] -
Catalytic gasification of a single coal char particle: An experimental and simulation study
Liu, Zhuoran | Wang, Xingjun | Chen, Qian | Li, Hongxia | Guo, Qinghua | Yu, Guangsuo | Liu, Haifeng | Wang, FuchenCarbon Resources Conversion, Vol. 8 (2025), Iss. 1 P.100296
https://doi.org/10.1016/j.crcon.2024.100296 [Citations: 0] -
Micro-continuum approach for mineral precipitation
Yang, Fengchang | Stack, Andrew G. | Starchenko, VitaliiScientific Reports, Vol. 11 (2021), Iss. 1
https://doi.org/10.1038/s41598-021-82807-y [Citations: 15] -
Pore-space alteration induced by brine acidification in subsurface geologic formations
Ovaysi, Saeed | Piri, MohammadWater Resources Research, Vol. 50 (2014), Iss. 1 P.440
https://doi.org/10.1002/2013WR014289 [Citations: 16] -
Effects of Different Motion Parameters on the Interaction of Fish School Subsystems
Zhang, Feihu | Pang, Jianhua | Wu, Zongduo | Liu, Junkai | Zhong, YifeiBiomimetics, Vol. 8 (2023), Iss. 7 P.510
https://doi.org/10.3390/biomimetics8070510 [Citations: 5] -
A concise python implementation of the lattice Boltzmann method on HPC for geo-fluid flow
Mora, Peter | Morra, Gabriele | Yuen, David AGeophysical Journal International, Vol. 220 (2020), Iss. 1 P.682
https://doi.org/10.1093/gji/ggz423 [Citations: 10] -
Numerical Study of Mineral Nucleation and Growth on a Substrate
Yang, Fengchang | Yuan, Ke | Stack, Andrew G. | Starchenko, VitaliiACS Earth and Space Chemistry, Vol. 6 (2022), Iss. 7 P.1655
https://doi.org/10.1021/acsearthspacechem.1c00376 [Citations: 10] -
Lattice Boltzmann model for the convection-diffusion equation
Chai, Zhenhua | Zhao, T. S.Physical Review E, Vol. 87 (2013), Iss. 6
https://doi.org/10.1103/PhysRevE.87.063309 [Citations: 169] -
Unified mesoscopic modeling and GPU-accelerated computational method for image-based pore-scale porous media flows
An, Senyou | (Whitney) Yu, Huidan | Wang, Zhiqiang | Kapadia, Behram | Yao, JunInternational Journal of Heat and Mass Transfer, Vol. 115 (2017), Iss. P.1192
https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.099 [Citations: 35] -
The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface
Ashorynejad, Hamid Reza | Javaherdeh, Koroush | Van den Akker, Harry E.A.International Journal of Hydrogen Energy, Vol. 41 (2016), Iss. 32 P.14239
https://doi.org/10.1016/j.ijhydene.2016.05.291 [Citations: 51] -
Modeling flavor development in cereal based foams under thermal treatment
Mack, Simone | Hussein, Mohamed A. | Becker, ThomasProcedia Food Science, Vol. 1 (2011), Iss. P.1223
https://doi.org/10.1016/j.profoo.2011.09.182 [Citations: 1] -
Coupling of reaction and hydrodynamics around a reacting block modeled by Lattice Boltzmann Method (LBM)
Mishra, Sudib Kumar | De, AshokeComputers & Fluids, Vol. 71 (2013), Iss. P.91
https://doi.org/10.1016/j.compfluid.2012.10.011 [Citations: 17] -
Identification of reaction rate parameters from uncertain spatially distributed concentration data using gradient-based PDE constrained optimization
Ito, Shota | Jeßberger, Julius | Simonis, Stephan | Bukreev, Fedor | Kummerländer, Adrian | Zimmermann, Alexander | Thäter, Gudrun | Pesch, Georg R. | Thöming, Jorg | Krause, Mathias J.Computers & Mathematics with Applications, Vol. 167 (2024), Iss. P.249
https://doi.org/10.1016/j.camwa.2024.05.026 [Citations: 1] -
An Efficient Method of Generating and Characterizing Filter Substrates for Lattice Boltzmann Analysis
Murdock, John Ryan | Ibrahim, Aamir | Yang, Song-LinJournal of Fluids Engineering, Vol. 140 (2018), Iss. 4
https://doi.org/10.1115/1.4038167 [Citations: 5] -
Phase-field modeling of coupled reactive transport and pore structure evolution due to mineral dissolution in porous media
Li, Heng | Wang, Fugang | Wang, Yaohui | Yuan, Yilong | Feng, Guanhong | Tian, Hailong | Xu, TianfuJournal of Hydrology, Vol. 619 (2023), Iss. P.129363
https://doi.org/10.1016/j.jhydrol.2023.129363 [Citations: 10] -
Novel regimes of calcium carbonate dissolution in micron-scale confined spaces
Xu, Jianping | Balhoff, Matthew T.Advances in Water Resources, Vol. 164 (2022), Iss. P.104200
https://doi.org/10.1016/j.advwatres.2022.104200 [Citations: 6] -
Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method
Chai, Zhenhua | Zhao, T. S.Physical Review E, Vol. 90 (2014), Iss. 1
https://doi.org/10.1103/PhysRevE.90.013305 [Citations: 53] -
Diffusion velocity lattice Boltzmann formulation applied to transport in macroscopic porous media
Perko, Janez | Patel, Ravi A.International Journal of Modern Physics C, Vol. 25 (2014), Iss. 12 P.1441006
https://doi.org/10.1142/S012918311441006X [Citations: 1] -
Pore‐scale study of reactive transfer process involving coke deposition via lattice Boltzmann method
Wang, Shuai | Yang, Xuesong | He, YurongAIChE Journal, Vol. 68 (2022), Iss. 3
https://doi.org/10.1002/aic.17478 [Citations: 2] -
Plasma-induced catalysis: towards a numerical approach
Li, Haijing | Toschi, FedericoPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190396
https://doi.org/10.1098/rsta.2019.0396 [Citations: 3] -
Lattice Boltzmann Simulation of Magnetic Field Effect on Natural Convection of Power-Law Nanofluids in Rectangular Enclosures
Wang, Lei | Chai, Zhenhua | Shi, BaochangAdvances in Applied Mathematics and Mechanics, Vol. 9 (2017), Iss. 5 P.1094
https://doi.org/10.4208/aamm.OA-2016-0066 [Citations: 11] -
Recent progress in multi‐scale modeling and simulation of flow and solute transport in porous media
Yang, Xiaofan | Sun, Haoran | Yang, Yurong | Liu, Yuanyuan | Li, XiaoyanWIREs Water, Vol. 8 (2021), Iss. 6
https://doi.org/10.1002/wat2.1561 [Citations: 15] -
Improved phase-field-based lattice Boltzmann method for thermocapillary flow
Yue, Liqing | Chai, Zhenhua | Wang, Huili | Shi, BaochangPhysical Review E, Vol. 105 (2022), Iss. 1
https://doi.org/10.1103/PhysRevE.105.015314 [Citations: 15] -
Lattice Boltzmann method investigation of a reactive electro-kinetic flow in porous media: towards a phenomenological model
Li, Haijing | Clercx, Herman J. H. | Toschi, FedericoPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379 (2021), Iss. 2208
https://doi.org/10.1098/rsta.2020.0398 [Citations: 2] -
Impact of saturation on mass transfer rate between mobile and immobile waters in solute transport within aggregated soils
Hu, Wulong | Huang, Ning | Zhang, XiaoxianJournal of Hydrology, Vol. 519 (2014), Iss. P.3557
https://doi.org/10.1016/j.jhydrol.2014.10.057 [Citations: 19] -
A lattice-Boltzmann study of permeability-porosity relationships and mineral precipitation patterns in fractured porous media
Ahkami, Mehrdad | Parmigiani, Andrea | Di Palma, Paolo Roberto | Saar, Martin O. | Kong, Xiang-ZhaoComputational Geosciences, Vol. 24 (2020), Iss. 5 P.1865
https://doi.org/10.1007/s10596-019-09926-4 [Citations: 20] -
A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation
Huber, Christian | Shafei, Babak | Parmigiani, AndreaGeochimica et Cosmochimica Acta, Vol. 124 (2014), Iss. P.109
https://doi.org/10.1016/j.gca.2013.09.003 [Citations: 74] -
Application of Regularized Hydrodynamic Equations for Direct Numerical Simulation of Micro-Scale Flows in Core Samples
Chetverushkin, Boris | Balashov, Vladislav | Kuleshov, Andrey | Savenkov, Evgeny | Mastorakis, N. | Mladenov, V. | Bulucea, A.MATEC Web of Conferences, Vol. 210 (2018), Iss. P.04026
https://doi.org/10.1051/matecconf/201821004026 [Citations: 0] -
Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution
Wang, Lei | Huang, Changsheng | Yang, Xuguang | Chai, Zhenhua | Shi, BaochangInternational Journal of Heat and Mass Transfer, Vol. 128 (2019), Iss. P.688
https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.007 [Citations: 67]