Algebraic Approach to Geometric Quantum Speed Limits in Triatomic Molecules

Algebraic Approach to Geometric Quantum Speed Limits in Triatomic Molecules

Year:    2016

Author:    Hairan Feng, Peng Li, Xianfang Yue, Yujun Zheng

Journal of Atomic and Molecular Sciences, Vol. 7 (2016), Iss. 4 : pp. 207–212

Abstract

The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jams.062016.081216a

Journal of Atomic and Molecular Sciences, Vol. 7 (2016), Iss. 4 : pp. 207–212

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    Lie-algebra quantum speed limit triatomic molecules.

Author Details

Hairan Feng

Peng Li

Xianfang Yue

Yujun Zheng

  1. Quantum speed limit time, non-Markovianity and quantum phase transition in Ising spins system

    Musadiq, Muhammad

    Khan, Salman

    Journal of Physics A: Mathematical and Theoretical, Vol. 53 (2020), Iss. 50 P.505302

    https://doi.org/10.1088/1751-8121/abc21e [Citations: 6]