Effect of the Initial Rotational and Vibrational State on the Stereodynamics of $N(^4S)+O_2(X^3\sum^-_g)\rightarrow O(^3P)+NO(X^2\Pi)$ Reaction
Year: 2015
Author: Hai-Liang Chen, Zhi-Hong Zhang, Chuan-Lu Yang, Mei-Shan Wang, Xiao-Guang Ma
Journal of Atomic and Molecular Sciences, Vol. 6 (2015), Iss. 2 : pp. 72–82
Abstract
The stereodynamics of the atom-molecule reaction $N(^4S)+O_2(X^3Σ^-_g) → O(^3P) +NO(X^2\Pi)$ has been studied using quasi-classical trajectory method with the lowest $^2A'$ potential energy surfaces (PESs) given by Sayós et al. [R. Sayós, C. Oliva, M. González, J. Chem. Phys. 117 (2002) 670]. Four generalized polarization-dependent differential cross-sections $[(2π/σ) (dσ_{00}/dω_t),$ $(2π/σ)(dσ_{20}/dω_t),$ $(2π/σ)(dσ_{22+}/dω_t),$ $(2π/σ)(dσ_{21-}/dω_t)]$ and distributions $P(θ_r),$ $P(\phi_r)$ were calculated. The effects of the different initial rotational and vibrational states were analyzed. It found that the degree of the forward scatting and the product polarizations show obviously change along with the initial vibration number, which leads to the increase of alignment and decrease orientation of product rotational angular momentum $j'.$ Although the influence of the initial rotational excitation effect on the aligned and oriented distribution of product is not stronger than that of the initial vibration excitation effect, the initial rotational excitation makes the alignment of the product rotational angular momentum small change in a certain range. Moreover, the $P(θ_r)$ distribution and $P(\phi_r)$ distribution change noticeably by varying the initial vibration number.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jams.041015.050915a
Journal of Atomic and Molecular Sciences, Vol. 6 (2015), Iss. 2 : pp. 72–82
Published online: 2015-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 11
Keywords: quasiclassical trajectory vector correlations stereodynamics rotational and vibrational excitation.