Year: 2023
CAM-Net Digest, Vol. 20 (2023), Iss. 9 : p. 6
Abstract
1. 授课专家
董峰明,现为新加坡南洋理工大学副教授、博士生导师,是图的色多项式领域的知名专家。1997年新加坡国立大学博士。主要研究兴趣为图论,特别是图和拟阵的结构与多项式的关系。和他人合作,已出版专著和其他书籍四本, 发表学术论文近100篇,发表在JCTA, JCTB, JGT等国际组合数学重要学术刊物上。解决了若干公开问题及猜想,包括牛津大学的Welsh和Bartel提出的“Shameful Conjecture”。2008年被剑桥大学聘为客座研究员,参与剑桥大学牛顿数学研究所的组合学与统计物理的研究工作。2015年被邀请参与《the CRC Handbook on the Tutte Polynomial and Related Topics》手册的撰写工作。
2. 短课程介绍
A matroid is a structure that generalizes the notion of linear independence in vector spaces. Matroids have found applications in many mathematical subjects such as geometry, topology, combinatorial optimization, network theory and coding theory. I will give a series of talks for the beginners of Matroid theory. These talks cover the following topics: (a)Definition of matroids and equivalent statements; (b)Basic concepts: bases, rank function, closures, etc; (c)Transversal matroids, the lattice of flats; (d)Duality; (e)Tutte polynomials and recent advances.
3. 授课时间与内容
5月17日 9:00-12:00
Examples, Independent sets, Graphic matroids and representable matroids
5月18日 9:00-12:00
Basic concepts: circuits, bases, rank function, closures, etc
5月19日 9:00-12:00
Affine matroids, Geometric representation of a matroid with rank at most 4,Transversal matroids, the lattice of flats
5月22日 9:00-12:00
Duality: the dual of a matroid, clutters in a matroid, matroids characterized by hyperplanes
5月23日 14:30-17:30
Characteristic polynomials, Tutte polynomials and recent advances
4. 授课地点 Course Link:
线下:厦门大学海韵园数理大楼686【仅限集美大学与厦门大学师生参加】
线上:腾讯会议ID:374-7808-4513(无密码)
对本次课程感兴趣的老师、同学可自行线上参加,无需报名。如果出现网络或其他意外故障,请大家及时访问此网页获得最新信息。
5. 联系人 Contact
叶老师,0592-2580036,tymath2@xmu.edu.cn
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: Chinese
DOI: https://doi.org/2023-CAM-21695
CAM-Net Digest, Vol. 20 (2023), Iss. 9 : p. 6
Published online: 2023-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 1