【会议信息】Safety and Security of Deep Learning, ONLINE, Apr 2021

【会议信息】Safety and Security of Deep Learning, ONLINE, Apr 2021

Year:    2021

CAM-Net Digest, Vol. 18 (2021), Iss. 2 : p. 6

Abstract

Deep learning is profoundly reshaping the research directions of entire scientific communities across mathematics, computer science, and statistics, as well as the physical, biological and medical sciences . Yet, despite their indisputable success, deep neural networks are known to be universally unstable. That is, small changes in the input that are almost undetectable produce significant changes in the output. This happens in applications such as image recognition and classification, speech and audio recognition, automatic diagnosis in medicine, image reconstruction and medical imaging as well as inverse problems in general. This phenomenon is now very well documented and yields non-human-like behaviour of neural networks in the cases where they replace humans, and unexpected and unreliable behaviour where they replace standard algorithms in the sciences.

The many examples produced over the last years demonstrate the intricacy of this complex problem and the questions of safety and security of deep learning become crucial. Moreover, the ubiquitous phenomenon of instability combined with the lack of interpretability of deep neural networks makes the reproducibility of scientific results based on deep learning at stake.

For these reasons, the development of mathematical foundations aimed at improving the safety and security of deep learning is of key importance. The goal of this workshop is to bring together experts from mathematics, computer science, and statistics in order to accelerate the exploration of breakthroughs and of emerging mathematical ideas in this area.

This ICERM workshop is fully funded by a Simons Foundation Targeted Grant to Institutes.

Apply today! https://icerm.brown.edu/events/htw-21-ssdl/

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    Chinese

DOI:    https://doi.org/2021-CAM-19668

CAM-Net Digest, Vol. 18 (2021), Iss. 2 : p. 6

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    1

Keywords: