【期刊信息】Discrete & Continuous Dynamical Systems – S, Volume 14, Issue 2, 2021

【期刊信息】Discrete & Continuous Dynamical Systems – S, Volume 14, Issue 2, 2021

Year:    2021

CAM-Net Digest, Vol. 18 (2021), Iss. 2 : p. 10

Abstract

URL: https://www.aimsciences.org/journal/1937-1632/2021/14/2

Preface
Thibaut Deheuvels, Antoine Henrot, El Haj Laamri, Alain Miranville, Jean Rodolphe Roche and Didier Schmitt

A brief tribute to pierre baras
Thibaut Deheuvels, Antoine Henrot, El Haj Laamri, Alain Miranville, Jean Rodolphe Roche and Didier Schmitt

Stationary reaction-diffusion systems in L1 revisited
El Haj Laamri and Michel Pierre

A generalization of a criterion for the existence of solutions to semilinear elliptic equations
Pierre Baras

On classes of well-posedness for quasilinear diffusion equations in the whole space
Boris Andreianov and Mohamed Maliki

The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model
Björn Augner and Dieter Bothe

Instability of free interfaces in premixed flame propagation
Claude-Michel Brauner and Luca Lorenzi

Equipartition of energy for nonautonomous damped wave equations
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein and Silvia Romanelli

A mathematical model for marine dinoflagellates blooms
M. Dambrine, B. Puig and G. Vallet

Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions
Klemens Fellner, Jeff Morgan and Bao Quoc Tang

A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions
Franck Davhys Reval Langa and Morgan Pierre

Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties
Philippe Laurençot and Christoph Walker

Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation
Patrick Martinez and Judith Vancostenoble

Theoretical and numerical analysis of a class of quasilinear elliptic equations
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi and Jean R. Roche

A semilinear heat equation with initial data in negative Sobolev spaces
Haruki Umakoshi


------------------------------
End of CAM Digest
本期到此结束

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    Chinese

DOI:    https://doi.org/2021-CAM-19672

CAM-Net Digest, Vol. 18 (2021), Iss. 2 : p. 10

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    1

Keywords: