【期刊信息】Advances in Applied Mathematics and Mechanics, Volume 12, Issue 1, 2020

【期刊信息】Advances in Applied Mathematics and Mechanics, Volume 12, Issue 1, 2020

Year:    2019

CAM-Net Digest, Vol. 16 (2019), Iss. 24 : p. 8

Abstract

High-Order Accurate Entropy Stable Finite Difference Schemes for One- and Two-Dimensional Special Relativistic Hydrodynamics
Junming Duan and Huazhong Tang
Adv. Appl. Math. Mech., 12 (2020), pp. 1-29.

Convergence Analysis on Stochastic Collocation Methods for the Linear Schrodinger Equation with Random Inputs
Zhizhang Wu and Zhongyi Huang
Adv. Appl. Math. Mech., 12 (2020), pp. 30-56.

A Jacobi Collocation Method for the Fractional Ginzburg-Landau Differential Equation
Yin Yang, Jianyong Tao, Shangyou Zhang and Petr V. Sivtsev
Adv. Appl. Math. Mech., 12 (2020), pp. 57-86.

A Posteriori Error Estimates of the Galerkin Spectral Methods for Space-Time Fractional Diffusion Equations
Huasheng Wang, Yanping Chen, Yunqing Huang and Wenting Mao
Adv. Appl. Math. Mech., 12 (2020), pp. 87-100.

Perfectly Matched Layer Method for Acoustic Scattering Problem by a Locally Perturbed Line with Impedance Boundary Condition
Xue Jiang and Xujing Li
Adv. Appl. Math. Mech., 12 (2020), pp. 101-140.

Superconvergence Analysis for the Maxwell's Equations in Debye Medium with a Thermal Effect
Changhui Yao, Dongyang Shi and Mengmeng Hou
Adv. Appl. Math. Mech., 12 (2020), pp. 141-163.

The Weak Galerkin Finite Element Method for Solving the Time-Dependent Integro-Differential Equations
Xiuli Wang, Qilong Zhai, Ran Zhang and Shangyou Zhang
Adv. Appl. Math. Mech., 12 (2020), pp. 164-188.

Discontinuous Galerkin Methods for Multi-Pantograph Delay Differential Equations
Kun Jiang, Qiumei Huang and Xiuxiu Xu
Adv. Appl. Math. Mech., 12 (2020), pp. 189-211.

A Robust Riemann Solver for Multiple Hydro-Elastoplastic Solid Mediums
Ruo Li, Yanli Wang and Chengbao Yao
Adv. Appl. Math. Mech., 12 (2020), pp. 212-250.

A Viscosity-Splitting Method for the Navier-Stokes/ Darcy Problem
Yunxia Wang, Xuefeng Han and Zhiyong Si
Adv. Appl. Math. Mech., 12 (2020), pp. 251-277.

A Mixed Formulation of Stabilized Nonconforming Finite Element Method for Linear Elasticity
Bei Zhang and Jikun Zhao
Adv. Appl. Math. Mech., 12 (2020), pp. 278-300.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    Multiple languages

DOI:    https://doi.org/2019-CAM-13760

CAM-Net Digest, Vol. 16 (2019), Iss. 24 : p. 8

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    1

Keywords: