Random Walk Approximation for Irreversible Drift-Diffusion Process on Manifold: Ergodicity, Unconditional Stability and Convergence

Random Walk Approximation for Irreversible Drift-Diffusion Process on Manifold: Ergodicity, Unconditional Stability and Convergence

Year:    2023

Author:    Yuan Gao, Jian-Guo Liu

Communications in Computational Physics, Vol. 34 (2023), Iss. 1 : pp. 132–172

Abstract

Irreversible drift-diffusion processes are very common in biochemical reactions. They have a non-equilibrium stationary state (invariant measure) which does not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed manifold, using Voronoi tessellation, we propose two upwind finite volume schemes with or without the information of the invariant measure. Both schemes possess stochastic $Q$-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part, enabling us to prove unconditional stability, ergodicity and error estimates. Based on the two upwind schemes, several numerical examples – including sampling accelerated by a mixture flow, image transformations and simulations for stochastic model of chaotic system – are conducted. These two structure-preserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold. This makes them suitable for adapting to manifold-related computations that arise from high-dimensional molecular dynamics simulations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2023-0021

Communications in Computational Physics, Vol. 34 (2023), Iss. 1 : pp. 132–172

Published online:    2023-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    41

Keywords:    Symmetric decomposition non-equilibrium thermodynamics enhancement by mixture exponential ergodicity structure-preserving numerical scheme.

Author Details

Yuan Gao

Jian-Guo Liu