Journals
Resources
About Us
Open Access

Convergence Rate Analysis for Deep Ritz Method

Convergence Rate Analysis for Deep Ritz Method

Year:    2022

Author:    Chenguang Duan, Yuling Jiao, Yanming Lai, Dingwei Li, Xiliang Lu, Jerry Zhijian Yang

Communications in Computational Physics, Vol. 31 (2022), Iss. 4 : pp. 1020–1048

Abstract

Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) [47] for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with ${\rm ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyperparameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bound on the approximation error of deep ${\rm ReLU}^2$ network in $C^1$ norm and bound on the Rademacher complexity of the non-Lipschitz composition of gradient norm and ${\rm ReLU}^2$ network, both of which are of independent interest.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2021-0195

Communications in Computational Physics, Vol. 31 (2022), Iss. 4 : pp. 1020–1048

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:    Deep Ritz method deep neural networks convergence rate analysis.

Author Details

Chenguang Duan

Yuling Jiao

Yanming Lai

Dingwei Li

Xiliang Lu

Jerry Zhijian Yang

  1. Solving Parametric Partial Differential Equations with Deep Rectified Quadratic Unit Neural Networks

    Lei, Zhen | Shi, Lei | Zeng, Chenyu

    Journal of Scientific Computing, Vol. 93 (2022), Iss. 3

    https://doi.org/10.1007/s10915-022-02015-2 [Citations: 5]
  2. Solving a Class of High-Order Elliptic PDEs Using Deep Neural Networks Based on Its Coupled Scheme

    Li, Xi’an | Wu, Jinran | Zhang, Lei | Tai, Xin

    Mathematics, Vol. 10 (2022), Iss. 22 P.4186

    https://doi.org/10.3390/math10224186 [Citations: 0]
  3. Deep Ritz Method for Elliptical Multiple Eigenvalue Problems

    Ji, Xia | Jiao, Yuling | Lu, Xiliang | Song, Pengcheng | Wang, Fengru

    Journal of Scientific Computing, Vol. 98 (2024), Iss. 2

    https://doi.org/10.1007/s10915-023-02443-8 [Citations: 1]
  4. Deep convolutional Ritz method: parametric PDE surrogates without labeled data

    Fuhg, J. N. | Karmarkar, A. | Kadeethum, T. | Yoon, H. | Bouklas, N.

    Applied Mathematics and Mechanics, Vol. 44 (2023), Iss. 7 P.1151

    https://doi.org/10.1007/s10483-023-2992-6 [Citations: 12]
  5. Generalization of PINNs for elliptic interface problems

    Jiang, Xuelian | Wang, Ziming | Bao, Wei | Xu, Yingxiang

    Applied Mathematics Letters, Vol. 157 (2024), Iss. P.109175

    https://doi.org/10.1016/j.aml.2024.109175 [Citations: 0]
  6. Solving PDEs on unknown manifolds with machine learning

    Liang, Senwei | Jiang, Shixiao W. | Harlim, John | Yang, Haizhao

    Applied and Computational Harmonic Analysis, Vol. 71 (2024), Iss. P.101652

    https://doi.org/10.1016/j.acha.2024.101652 [Citations: 1]
  7. WAN Discretization of PDEs: Best Approximation, Stabilization, and Essential Boundary Conditions

    Bertoluzza, Silvia | Burman, Erik | He, Cuiyu

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 6 P.C688

    https://doi.org/10.1137/23M1588196 [Citations: 0]
  8. Imaging conductivity from current density magnitude using neural networks*

    Jin, Bangti | Li, Xiyao | Lu, Xiliang

    Inverse Problems, Vol. 38 (2022), Iss. 7 P.075003

    https://doi.org/10.1088/1361-6420/ac6d03 [Citations: 8]
  9. Solving Elliptic Problems with Singular Sources Using Singularity Splitting Deep Ritz Method

    Hu, Tianhao | Jin, Bangti | Zhou, Zhi

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 4 P.A2043

    https://doi.org/10.1137/22M1520840 [Citations: 2]
  10. Current density impedance imaging with PINNs

    Duan, Chenguang | Huang, Junjun | Jiao, Yuling | Lu, Xiliang | Yang, Jerry Zhijian

    Journal of Computational and Applied Mathematics, Vol. 452 (2024), Iss. P.116120

    https://doi.org/10.1016/j.cam.2024.116120 [Citations: 0]
  11. Deep learning algorithms for solving differential equations: a survey

    Kumar, Harender | Yadav, Neha

    Journal of Experimental & Theoretical Artificial Intelligence, Vol. (2023), Iss. P.1

    https://doi.org/10.1080/0952813X.2023.2242356 [Citations: 0]
  12. Convergence analysis of deep Ritz method with over-parameterization

    Ding, Zhao | Jiao, Yuling | Lu, Xiliang | Wu, Peiying | Yang, Jerry Zhijian

    Neural Networks, Vol. 184 (2025), Iss. P.107110

    https://doi.org/10.1016/j.neunet.2024.107110 [Citations: 0]
  13. Stationary Density Estimation of Itô Diffusions Using Deep Learning

    Gu, Yiqi | Harlim, John | Liang, Senwei | Yang, Haizhao

    SIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 1 P.45

    https://doi.org/10.1137/21M1445363 [Citations: 2]
  14. О решении дифференциальных уравнений с помощью нейронных сетей: целевые функционалы и верификация результатов

    Muzalevskii, Aleksey Vitalyevich | Repin, Sergey Igorevich

    Математическое моделирование, Vol. 36 (2024), Iss. 6 P.179

    https://doi.org/10.20948/mm-2024-06-12 [Citations: 0]
  15. ERROR ESTIMATES OF RESIDUAL MINIMIZATION USING NEURAL NETWORKS FOR LINEAR PDES

    Shin, Yeonjong | Zhang, Zhongqiang | Karniadakis, George Em

    Journal of Machine Learning for Modeling and Computing, Vol. 4 (2023), Iss. 4 P.73

    https://doi.org/10.1615/JMachLearnModelComput.2023050411 [Citations: 16]