Solving the Faddeev-Merkuriev Equations in Total Orbital Momentum Representation via Spline Collocation and Tensor Product Preconditioning

Solving the Faddeev-Merkuriev Equations in Total Orbital Momentum Representation via Spline Collocation and Tensor Product Preconditioning

Year:    2021

Author:    Vitaly A. Gradusov, Vladimir A. Roudnev, Evgeny A. Yarevsky, Sergey L. Yakovlev

Communications in Computational Physics, Vol. 30 (2021), Iss. 1 : pp. 255–287

Abstract

The computational approach for solving the Faddeev-Merkuriev equations in total orbital momentum representation is presented. These equations describe a system of three quantum charged particles and are widely used in bound state and scattering calculations. The approach is based on the spline collocation method and exploits intensively the tensor product form of discretized operators and preconditioner, which leads to a drastic economy in both computer resources and time.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2020-0097

Communications in Computational Physics, Vol. 30 (2021), Iss. 1 : pp. 255–287

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords:    Faddeev-Merkuriev equations total orbital momentum representation spline collocation tensor product preconditioner.

Author Details

Vitaly A. Gradusov

Vladimir A. Roudnev

Evgeny A. Yarevsky

Sergey L. Yakovlev

  1. Parallel Computational Technologies

    Solving the Three-Dimensional Faddeev–Merkuriev Equations via Spline Collocation and Tensor Product Preconditioning

    Gradusov, V. A. | Roudnev, V. A. | Yarevsky, E. A. | Yakovlev, S. L.

    2023

    https://doi.org/10.1007/978-3-031-38864-4_5 [Citations: 0]
  2. On the scattering problem for a potential decreasing as the inverse square of distance

    Gradusov, V. A. | Yakovlev, S. L.

    Theoretical and Mathematical Physics, Vol. 217 (2023), Iss. 2 P.1777

    https://doi.org/10.1134/S0040577923110120 [Citations: 2]
  3. Theoretical Study of Reactions in the $${{e}^{ - }}{{e}^{ + }}\bar {p}$$ Three Body System and Antihydrogen Formation Cross Sections

    Gradusov, V. A. | Roudnev, V. A. | Yarevsky, E. A. | Yakovlev, S. L.

    JETP Letters, Vol. 114 (2021), Iss. 1 P.11

    https://doi.org/10.1134/S0021364021130026 [Citations: 4]
  4. Theoretical study of antihydrogen formation reactions in the three body <span class="inline-formula"><span class="math">\({{e}^{ + }}{{e}^{ - }}\bar {p}\)</span></span> system via Faddeev–Merkuriev equations in total orbital momentum representation

    Gradusov, V. A. | Roudnev, V. A. | Yarevsky, E. A. | Yakovlev, S. L.

    Известия Российской академии наук. Серия физическая, Vol. 87 (2023), Iss. 8 P.1191

    https://doi.org/10.31857/S0367676523702137 [Citations: 0]
  5. Gailitis–Damburg Oscillations in the Three-Body e–e+$$\bar {p}$$ System

    Gradusov, V. A. | Yakovlev, S. L.

    JETP Letters, Vol. 119 (2024), Iss. 3 P.151

    https://doi.org/10.1134/S0021364023604219 [Citations: 0]
  6. Theoretical Study of Antihydrogen Formation Reactions in the Three Body $${{e}^{ + }}{{e}^{ - }}\bar {p}$$ System via Faddeev–Merkuriev Equations in Total Orbital Momentum Representation

    Gradusov, V. A. | Roudnev, V. A. | Yarevsky, E. A. | Yakovlev, S. L.

    Bulletin of the Russian Academy of Sciences: Physics, Vol. 87 (2023), Iss. 8 P.1200

    https://doi.org/10.3103/S1062873823703100 [Citations: 1]