Multiple-Scattering $T$-Matrix Simulations for Nanophotonics: Symmetries and Periodic Lattices

Multiple-Scattering $T$-Matrix Simulations for Nanophotonics: Symmetries and Periodic Lattices

Year:    2021

Author:    Marek Nečada, Päivi Törmä

Communications in Computational Physics, Vol. 30 (2021), Iss. 2 : pp. 357–395

Abstract

The multiple scattering method T-matrix (MSTMM) can be used to solve the electromagnetic response of systems consisting of many compact scatterers, retaining a good level of accuracy while using relatively few degrees of freedom, largely surpassing other methods in the number of scatterers it can deal with. Here we extend the method to infinite periodic structures using Ewald-type lattice summation, and we exploit the possible symmetries of the structure to further improve its efficiency, so that systems containing tens of thousands of particles can be studied with relative ease. We release a modern implementation of the method, including the theoretical improvements presented here, under GNU General Public Licence.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2020-0136

Communications in Computational Physics, Vol. 30 (2021), Iss. 2 : pp. 357–395

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    39

Keywords:    T-matrix multiple scattering lattice modes symmetry-adapted basis metamaterials Ewald summation.

Author Details

Marek Nečada

Päivi Törmä

  1. Pseudospin-orbit coupling and non-Hermitian effects in the quantum geometric tensor of a plasmonic lattice

    Cuerda, Javier | Taskinen, Jani M. | Källman, Nicki | Grabitz, Leo | Törmä, Päivi

    Physical Review B, Vol. 109 (2024), Iss. 16

    https://doi.org/10.1103/PhysRevB.109.165439 [Citations: 2]
  2. treams – a T-matrix-based scattering code for nanophotonics

    Beutel, Dominik | Fernandez-Corbaton, Ivan | Rockstuhl, Carsten

    Computer Physics Communications, Vol. 297 (2024), Iss. P.109076

    https://doi.org/10.1016/j.cpc.2023.109076 [Citations: 11]
  3. Unified lattice sums accommodating multiple sublattices for solutions of the Helmholtz equation in two and three dimensions

    Beutel, Dominik | Fernandez-Corbaton, Ivan | Rockstuhl, Carsten

    Physical Review A, Vol. 107 (2023), Iss. 1

    https://doi.org/10.1103/PhysRevA.107.013508 [Citations: 8]
  4. Multimode Lasing in Supercell Plasmonic Nanoparticle Arrays

    Heilmann, Rebecca | Arjas, Kristian | Hakala, Tommi K. |

    ACS Photonics, Vol. 10 (2023), Iss. 11 P.3955

    https://doi.org/10.1021/acsphotonics.3c00761 [Citations: 7]
  5. Multiple scattering of light in nanoparticle assemblies: User guide for the terms program

    Schebarchov, D. | Fazel-Najafabadi, A. | Le Ru, E.C. | Auguié, B.

    Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 284 (2022), Iss. P.108131

    https://doi.org/10.1016/j.jqsrt.2022.108131 [Citations: 9]
  6. Loss-Driven Topological Transitions in Lasing

    Salerno, Grazia | Heilmann, Rebecca | Arjas, Kristian | Aronen, Kerttu | Martikainen, Jani-Petri | Törmä, Päivi

    Physical Review Letters, Vol. 129 (2022), Iss. 17

    https://doi.org/10.1103/PhysRevLett.129.173901 [Citations: 15]
  7. A Multi‐Scale Approach for Modeling the Optical Response of Molecular Materials Inside Cavities

    Zerulla, Benedikt | Krstić, Marjan | Beutel, Dominik | Holzer, Christof | Wöll, Christof | Rockstuhl, Carsten | Fernandez‐Corbaton, Ivan

    Advanced Materials, Vol. 34 (2022), Iss. 21

    https://doi.org/10.1002/adma.202200350 [Citations: 20]
  8. A block elimination algorithm for multiple scattering of multilayered concentric nanoparticle aggregates

    Li, Rongheng | Li, Ben Q.

    Journal of Nanoparticle Research, Vol. 25 (2023), Iss. 3

    https://doi.org/10.1007/s11051-023-05696-4 [Citations: 0]
  9. Plasmonic Nanostructures - Basic Concepts, Optimization and Applications

    The Influence of Geometry on Plasmonic Resonances in Surface- and Tip-Enhanced Raman Spectroscopy

    He, Lu | R.T. Zahn, Dietrich | I. Madeira, Teresa

    2023

    https://doi.org/10.5772/intechopen.108182 [Citations: 0]
  10. CDPDS: Coupled dipole method-based photonic dispersion solver

    Kim, Minkyung | Rho, Junsuk

    Computer Physics Communications, Vol. 282 (2023), Iss. P.108493

    https://doi.org/10.1016/j.cpc.2022.108493 [Citations: 3]
  11. Fourier modal method for moiré lattices

    Salakhova, Natalia S. | Fradkin, Ilia M. | Dyakov, Sergey A. | Gippius, Nikolay A.

    Physical Review B, Vol. 104 (2021), Iss. 8

    https://doi.org/10.1103/PhysRevB.104.085424 [Citations: 10]
  12. An Algebraic Approach to Light–Matter Interactions

    Fernandez‐Corbaton, Ivan

    Advanced Physics Research, Vol. (2024), Iss.

    https://doi.org/10.1002/apxr.202400088 [Citations: 0]
  13. Scattering dominated spatial coherence and phase correlation properties in plasmonic lattice lasers

    Heikkinen, Janne I | Asamoah, Benjamin | Calpe, Roman | Nečada, Marek | Koivurova, Matias | Hakala, Tommi K

    New Journal of Physics, Vol. 24 (2022), Iss. 12 P.123002

    https://doi.org/10.1088/1367-2630/aca5aa [Citations: 1]