Dying ReLU and Initialization: Theory and Numerical Examples

Dying ReLU and Initialization: Theory and Numerical Examples

Year:    2020

Author:    Lu Lu, Yeonjong Shin, Yanhui Su, George Em Karniadakis

Communications in Computational Physics, Vol. 28 (2020), Iss. 5 : pp. 1671–1706

Abstract

The dying ReLU refers to the problem when ReLU neurons become inactive and only output 0 for any input. There are many empirical and heuristic explanations of why ReLU neurons die. However, little is known about its theoretical analysis. In this paper, we rigorously prove that a deep ReLU network will eventually die in probability as the depth goes to infinite. Several methods have been proposed to alleviate the dying ReLU. Perhaps, one of the simplest treatments is to modify the initialization procedure. One common way of initializing weights and biases uses symmetric probability distributions, which suffers from the dying ReLU. We thus propose a new initialization procedure, namely, a randomized asymmetric initialization. We show that the new initialization can effectively prevent the dying ReLU. All parameters required for the new initialization are theoretically designed. Numerical examples are provided to demonstrate the effectiveness of the new initialization procedure.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2020-0165

Communications in Computational Physics, Vol. 28 (2020), Iss. 5 : pp. 1671–1706

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    36

Keywords:    Neural network Dying ReLU Vanishing/Exploding gradient Randomized asymmetric initialization.

Author Details

Lu Lu

Yeonjong Shin

Yanhui Su

George Em Karniadakis

  1. Neural Network Model for Breast Tissue Thickness Estimation

    Jethani, Henna | Popović, Milica | Popović, Zoya

    2024 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), (2024), P.4

    https://doi.org/10.1109/IMBioC60287.2024.10590541 [Citations: 0]
  2. Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence

    Xu, Dehao | Wang, Jianchun | Yu, Changping | Chen, Shiyi

    Journal of Fluid Mechanics, Vol. 960 (2023), Iss.

    https://doi.org/10.1017/jfm.2023.179 [Citations: 10]
  3. Machine learning for faster estimates of groundwater response to artificial aquifer recharge

    Fernandes, Valdrich J. | de Louw, Perry G.B. | Bartholomeus, Ruud P. | Ritsema, Coen J.

    Journal of Hydrology, Vol. 637 (2024), Iss. P.131418

    https://doi.org/10.1016/j.jhydrol.2024.131418 [Citations: 1]
  4. Predicting long-term production dynamics in tight/shale gas reservoirs with dual-stage attention-based TEN-Seq2Seq model: A case study in Duvernay formation

    Wang, Hai | Wang, Shuhua | Chen, Shengnan | Hui, Gang

    Geoenergy Science and Engineering, Vol. 223 (2023), Iss. P.211495

    https://doi.org/10.1016/j.geoen.2023.211495 [Citations: 15]
  5. Physics-guided Bayesian neural networks by ABC-SS: Application to reinforced concrete columns

    Fernández, Juan | Chiachío, Juan | Chiachío, Manuel | Barros, José | Corbetta, Matteo

    Engineering Applications of Artificial Intelligence, Vol. 119 (2023), Iss. P.105790

    https://doi.org/10.1016/j.engappai.2022.105790 [Citations: 10]
  6. Deeper Neural Networks with Non-Vanishing Logistic Hidden Units: NoVa vs. ReLU Neurons

    Adigun, Olaoluwa | Kosko, Bart

    2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), (2021), P.1407

    https://doi.org/10.1109/ICMLA52953.2021.00227 [Citations: 6]
  7. Modelling the galaxy–halo connection with semi-recurrent neural networks

    Chittenden, Harry George | Tojeiro, Rita

    Monthly Notices of the Royal Astronomical Society, Vol. 518 (2022), Iss. 4 P.5670

    https://doi.org/10.1093/mnras/stac3498 [Citations: 4]
  8. A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions

    Jentzen, Arnulf | Riekert, Adrian

    Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 5

    https://doi.org/10.1007/s00033-022-01716-w [Citations: 5]
  9. Stress testing electrical grids: Generative Adversarial Networks for load scenario generation

    Rizzato, Matteo | Morizet, Nicolas | Maréchal, William | Geissler, Christophe

    Energy and AI, Vol. 9 (2022), Iss. P.100177

    https://doi.org/10.1016/j.egyai.2022.100177 [Citations: 5]
  10. Optimizing performance of feedforward and convolutional neural networks through dynamic activation functions

    Rane, Chinmay | Tyagi, Kanishka | Kline, Adrienne | Chugh, Tushar | Manry, Michael

    Evolutionary Intelligence, Vol. 17 (2024), Iss. 5-6 P.4083

    https://doi.org/10.1007/s12065-024-00973-0 [Citations: 0]
  11. Prediction of Hydrogen Abstraction Rate Constants at the Allylic Site between Alkenes and OH with Multiple Machine Learning Models

    Zhang, Lei | Ye, Lili | Wang, Fan | Gao, Wei | Yu, Jinhui | Zhang, Lidong

    The Journal of Physical Chemistry A, Vol. 128 (2024), Iss. 4 P.761

    https://doi.org/10.1021/acs.jpca.3c06917 [Citations: 0]
  12. Implementation of Supervised Pre-Training Methods for Univariate Time Series Forecasting

    Khanna, Vidul | Joshua, John | Pramila, Rm

    2023 2nd International Conference for Innovation in Technology (INOCON), (2023), P.1

    https://doi.org/10.1109/INOCON57975.2023.10101327 [Citations: 1]
  13. Designing high efficiency asymmetric polarization converter for blue light: a deep reinforcement learning approach

    Yi, Chuqiao | Chen, Zhiwei | Gao, Yayu | Du, Qingguo

    Optics Express, Vol. 30 (2022), Iss. 6 P.10032

    https://doi.org/10.1364/OE.449051 [Citations: 4]
  14. POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities

    Chen, Xinyu | Li, Renjie | Yu, Yueyao | Shen, Yuanwen | Li, Wenye | Zhang, Yin | Zhang, Zhaoyu

    Nanomaterials, Vol. 12 (2022), Iss. 24 P.4401

    https://doi.org/10.3390/nano12244401 [Citations: 7]
  15. Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization

    Wilhelm, Matthew E. | Wang, Chenyu | Stuber, Matthew D.

    Journal of Global Optimization, Vol. 85 (2023), Iss. 3 P.569

    https://doi.org/10.1007/s10898-022-01228-x [Citations: 3]
  16. MAGNETIC RESONANCE IMAGE DENOIZING USING A DUAL-CHANNEL DISCRIMINATIVE DENOIZING NETWORK

    Tripathi, Sumit

    Biomedical Engineering: Applications, Basis and Communications, Vol. 36 (2024), Iss. 01

    https://doi.org/10.4015/S1016237223500370 [Citations: 0]
  17. AZ-NAS: Assembling Zero-Cost Proxies for Network Architecture Search

    Lee, Junghyup | Ham, Bumsub

    2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2024), P.5893

    https://doi.org/10.1109/CVPR52733.2024.00563 [Citations: 0]
  18. Potential Role of Generative Adversarial Networks in Enhancing Brain Tumors

    Muhammed, Amr | Bakheet, Rafaat A. | Kenawy, Karam | Ahmed, Ahmed M.A. | Abdelhamid, Muhammed | Soliman, Walaa Gamal

    JCO Clinical Cancer Informatics, Vol. (2024), Iss. 8

    https://doi.org/10.1200/CCI.23.00266 [Citations: 0]
  19. Diagnosis of COVID-19 & Pneumonia from Chest x-ray Scans using Modified MobileNet Architecture

    Saha, Shrabana | Bhadra, Rajarshi | Kar, Subhajit

    2021 IEEE Mysore Sub Section International Conference (MysuruCon), (2021), P.793

    https://doi.org/10.1109/MysuruCon52639.2021.9641739 [Citations: 2]
  20. A 218 GOPS neural network accelerator based on a novel cost-efficient surrogate gradient scheme for pattern classification

    Siddique, Ali | Iqbal, Muhammad Azhar | Aleem, Muhammad | Islam, Muhammad Arshad

    Microprocessors and Microsystems, Vol. 99 (2023), Iss. P.104831

    https://doi.org/10.1016/j.micpro.2023.104831 [Citations: 3]
  21. Explainable AI classification for parton density theory

    Kriesten, Brandon | Gomprecht, Jonathan | Hobbs, T. J.

    Journal of High Energy Physics, Vol. 2024 (2024), Iss. 11

    https://doi.org/10.1007/JHEP11(2024)007 [Citations: 0]
  22. Graph convolutional networks: analysis, improvements and results

    Ullah, Ihsan | Manzo, Mario | Shah, Mitul | Madden, Michael G.

    Applied Intelligence, Vol. 52 (2022), Iss. 8 P.9033

    https://doi.org/10.1007/s10489-021-02973-4 [Citations: 21]
  23. Deeper Bidirectional Neural Networks with Generalized Non-Vanishing Hidden Neurons

    Adigun, Olaoluwa | Kosko, Bart

    2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), (2022), P.69

    https://doi.org/10.1109/ICMLA55696.2022.00017 [Citations: 1]
  24. PEA: Improving the Performance of ReLU Networks for Free by Using Progressive Ensemble Activations

    Utasi, Akos

    2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2022), P.2797

    https://doi.org/10.1109/CVPRW56347.2022.00317 [Citations: 0]
  25. ERANNs: Efficient residual audio neural networks for audio pattern recognition

    Verbitskiy, Sergey | Berikov, Vladimir | Vyshegorodtsev, Viacheslav

    Pattern Recognition Letters, Vol. 161 (2022), Iss. P.38

    https://doi.org/10.1016/j.patrec.2022.07.012 [Citations: 35]
  26. Unification of popular artificial neural network activation functions

    Mostafanejad, Mohammad

    Fractional Calculus and Applied Analysis, Vol. (2024), Iss.

    https://doi.org/10.1007/s13540-024-00347-4 [Citations: 0]
  27. RecuGAN: A Novel Generative AI Approach for Synthesizing RF Coverage Maps

    Sarkar, Sopan | Manshaei, Mohammad Hossein | Krunz, Marwan | Ravaee, Hamid

    2024 33rd International Conference on Computer Communications and Networks (ICCCN), (2024), P.1

    https://doi.org/10.1109/ICCCN61486.2024.10637562 [Citations: 0]
  28. One bead per residue can describe all-atom protein structures

    Heo, Lim | Feig, Michael

    Structure, Vol. 32 (2024), Iss. 1 P.97

    https://doi.org/10.1016/j.str.2023.10.013 [Citations: 12]
  29. Deep Learning Approach to the Texture Optimization Problem for Friction Control in Lubricated Contacts

    Silva, Alexandre | Lenzi, Veniero | Pyrlin, Sergey | Carvalho, Sandra | Cavaleiro, Albano | Marques, Luís

    Physical Review Applied, Vol. 19 (2023), Iss. 5

    https://doi.org/10.1103/PhysRevApplied.19.054078 [Citations: 2]
  30. CTC-Based Learning of Chroma Features for Score–Audio Music Retrieval

    Zalkow, Frank | Muller, Meinard

    IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 29 (2021), Iss. P.2957

    https://doi.org/10.1109/TASLP.2021.3110137 [Citations: 8]
  31. Monocular depth estimation using self-supervised learning with more effective geometric constraints

    Xiong, Mingkang | Zhang, Zhenghong | Liu, Jiyuan | Zhang, Tao | Xiong, Huilin

    Engineering Applications of Artificial Intelligence, Vol. 128 (2024), Iss. P.107489

    https://doi.org/10.1016/j.engappai.2023.107489 [Citations: 8]
  32. A Comparison of YOLOv4-Tiny and YOLOv7 Models for Pedestrian Detection

    Ao, Zixuan | Ma, Jing | Lai, Edmund M-K

    2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), (2023), P.1

    https://doi.org/10.1109/M2VIP58386.2023.10413432 [Citations: 0]
  33. CNCAN: Contrast and normal channel attention network for super-resolution image reconstruction of crops and weeds

    Lee, Sung Jae | Yun, Chaeyeong | Im, Su Jin | Park, Kang Ryoung

    Engineering Applications of Artificial Intelligence, Vol. 138 (2024), Iss. P.109487

    https://doi.org/10.1016/j.engappai.2024.109487 [Citations: 0]
  34. The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches

    Wyciślik, Łukasz | Wylężek, Przemysław | Momot, Alina

    Sensors, Vol. 24 (2024), Iss. 12 P.3763

    https://doi.org/10.3390/s24123763 [Citations: 0]
  35. Recent Geotechnical Research at BOKU

    Prediction of Tunnelling-Induced Settlement Trough by Artificial Neural Networks

    Soranzo, Enrico | Pock, Christoph | Guardiani, Carlotta | Wang, Yunteng | Wu, Wei

    2024

    https://doi.org/10.1007/978-3-031-52159-1_9 [Citations: 0]
  36. Towards Deadlock Handling with Machine Learning in a Simulation-Based Learning Environment

    Muller, Marcel | Reggelin, Tobias | Kutsenko, Iegor | Zadek, Hartmut | Reyes-Rubiano, Lorena S.

    2022 Winter Simulation Conference (WSC), (2022), P.1485

    https://doi.org/10.1109/WSC57314.2022.10015270 [Citations: 2]
  37. Underwater localization system based on visible-light communications using neural networks

    Ghonim, Alzahraa M. | Salama, Wessam M. | El-Fikky, Abd El-Rahman A. | Khalaf, Ashraf A. M. | Shalaby, Hossam M. H.

    Applied Optics, Vol. 60 (2021), Iss. 13 P.3977

    https://doi.org/10.1364/AO.419494 [Citations: 12]
  38. Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming

    Hojatian, Hamed | Nadal, Jeremy | Frigon, Jean-Francois | Leduc-Primeau, Francois

    IEEE Transactions on Wireless Communications, Vol. 20 (2021), Iss. 11 P.7086

    https://doi.org/10.1109/TWC.2021.3080672 [Citations: 59]
  39. Clothes Retrieval Using M-AlexNet With Mish Function and Feature Selection Using Joint Shannon’s Entropy Pearson’s Correlation Coefficient

    Murtaza, Marryam | Sharif, Muhammad | Yasmin, Mussarat | Fayyaz, Muhammad | Kadry, Seifedine | Lee, Mi Young

    IEEE Access, Vol. 10 (2022), Iss. P.115469

    https://doi.org/10.1109/ACCESS.2022.3218322 [Citations: 12]
  40. Deep neural networks with controlled variable selection for the identification of putative causal genetic variants

    Kassani, Peyman H. | Lu, Fred | Le Guen, Yann | Belloy, Michael E. | He, Zihuai

    Nature Machine Intelligence, Vol. 4 (2022), Iss. 9 P.761

    https://doi.org/10.1038/s42256-022-00525-0 [Citations: 7]
  41. Artificial Neural Networks and Machine Learning – ICANN 2021

    Dynamic Neural Diversification: Path to Computationally Sustainable Neural Networks

    Kovalenko, Alexander | Kordík, Pavel | Friedjungová, Magda

    2021

    https://doi.org/10.1007/978-3-030-86340-1_19 [Citations: 1]
  42. Eluding Secure Aggregation in Federated Learning via Model Inconsistency

    Pasquini, Dario | Francati, Danilo | Ateniese, Giuseppe

    Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, (2022), P.2429

    https://doi.org/10.1145/3548606.3560557 [Citations: 29]
  43. Improved Deep Learning Based ECG Classification through Automated Feature Selection and Weighted Loss Function

    De Waele, Timo | Peralta, Daniel | De Poorter, Eli | Shahid, Adnan

    2024 International Joint Conference on Neural Networks (IJCNN), (2024), P.1

    https://doi.org/10.1109/IJCNN60899.2024.10651531 [Citations: 0]
  44. Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks

    Aqel, Nedal | Reusser, Lea | Margreth, Stephan | Carminati, Andrea | Lehmann, Peter

    Geoscientific Model Development, Vol. 17 (2024), Iss. 18 P.6949

    https://doi.org/10.5194/gmd-17-6949-2024 [Citations: 0]
  45. Leaky ReLUs That Differ in Forward and Backward Pass Facilitate Activation Maximization in Deep Neural Networks

    Linse, Christoph | Barth, Erhardt | Martinetz, Thomas

    2024 International Joint Conference on Neural Networks (IJCNN), (2024), P.1

    https://doi.org/10.1109/IJCNN60899.2024.10650881 [Citations: 0]
  46. Superiorization-inspired unrolled SART algorithm with U-Net generated perturbations for sparse-view and limited-angle CT reconstruction

    Jia, Yiran | McMichael, Noah | Mokarzel, Pedro | Thompson, Brandon | Si, Dong | Humphries, Thomas

    Physics in Medicine & Biology, Vol. 67 (2022), Iss. 24 P.245004

    https://doi.org/10.1088/1361-6560/aca513 [Citations: 1]
  47. Enhancing Deep Learning Models for Brain Tumor Detection: The Impact of Activation Function Selection

    Nasayreh, Ahmad | Jaradat, Ameera S. | Al Mamlook, Rabia Emhamed | Bashkami, Ayah | Gharaibeh, Hasan | Al-Na'amneh, Qais | Bzizi, Hanin

    2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC), (2024), P.1

    https://doi.org/10.1109/INTCEC61833.2024.10602951 [Citations: 0]
  48. Minority-Weighted Graph Neural Network for Imbalanced Node Classification in Social Networks of Internet of People

    Wang, Kefan | An, Jing | Zhou, Mengchu | Shi, Zhe | Shi, Xudong | Kang, Qi

    IEEE Internet of Things Journal, Vol. 10 (2023), Iss. 1 P.330

    https://doi.org/10.1109/JIOT.2022.3200964 [Citations: 34]
  49. Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network

    Xiao, Meng | Yang, Bo | Wang, Shilong | Chang, Yongsheng | Li, Song | Yi, Gang

    Journal of Intelligent Manufacturing, Vol. 34 (2023), Iss. 5 P.2153

    https://doi.org/10.1007/s10845-022-01909-0 [Citations: 13]
  50. Convolutional neural networks prediction of the factor of safety of random layered slopes by the strength reduction method

    Soranzo, Enrico | Guardiani, Carlotta | Chen, Yiru | Wang, Yunteng | Wu, Wei

    Acta Geotechnica, Vol. 18 (2023), Iss. 6 P.3391

    https://doi.org/10.1007/s11440-022-01783-3 [Citations: 13]
  51. Sentiment Classification of Chinese Tourism Reviews Based on ERNIE-Gram+GCN

    Yang, Senqi | Duan, Xuliang | Xiao, Zeyan | Li, Zhiyao | Liu, Yuhai | Jie, Zhihao | Tang, Dezhao | Du, Hui

    International Journal of Environmental Research and Public Health, Vol. 19 (2022), Iss. 20 P.13520

    https://doi.org/10.3390/ijerph192013520 [Citations: 2]
  52. A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

    Lu, Lu | Meng, Xuhui | Cai, Shengze | Mao, Zhiping | Goswami, Somdatta | Zhang, Zhongqiang | Karniadakis, George Em

    Computer Methods in Applied Mechanics and Engineering, Vol. 393 (2022), Iss. P.114778

    https://doi.org/10.1016/j.cma.2022.114778 [Citations: 179]
  53. Self-gated rectified linear unit for performance improvement of deep neural networks

    Jahan, Israt | Ahmed, Md. Faisal | Ali, Md. Osman | Jang, Yeong Min

    ICT Express, Vol. 9 (2023), Iss. 3 P.320

    https://doi.org/10.1016/j.icte.2021.12.012 [Citations: 17]
  54. Prediction of multi-stage froth flotation efficiency of complex lead–zinc sulfide ore using an integrated ensemble neural network–random forest model

    Jo, Kwanghui | Je, Jinyoung | Lee, Donwoo | Cho, Heechan | Kim, Kwanho | You, Kwangsuk

    Minerals Engineering, Vol. 210 (2024), Iss. P.108669

    https://doi.org/10.1016/j.mineng.2024.108669 [Citations: 0]
  55. A high-performance, hardware-based deep learning system for disease diagnosis

    Siddique, Ali | Iqbal, Muhammad Azhar | Aleem, Muhammad | Lin, Jerry Chun-Wei

    PeerJ Computer Science, Vol. 8 (2022), Iss. P.e1034

    https://doi.org/10.7717/peerj-cs.1034 [Citations: 2]
  56. Classification of Pulmonary Nodules in 2-[18F]FDG PET/CT Images with a 3D Convolutional Neural Network

    Alves, Victor Manuel | dos Santos Cardoso, Jaime | Gama, João

    Nuclear Medicine and Molecular Imaging, Vol. 58 (2024), Iss. 1 P.9

    https://doi.org/10.1007/s13139-023-00821-6 [Citations: 3]
  57. Impact Makes a Sound and Sound Makes an Impact: Sound Guides Representations and Explorations

    Zhao, Xufeng | Weber, Cornelius | Hafez, Muhammad Burhan | Wermter, Stefan

    2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2022), P.2512

    https://doi.org/10.1109/IROS47612.2022.9981510 [Citations: 5]
  58. Denoising of magnetic resonance images using discriminative learning-based deep convolutional neural network

    Tripathi, Sumit | Sharma, Neeraj

    Technology and Health Care, Vol. 30 (2021), Iss. 1 P.145

    https://doi.org/10.3233/THC-212882 [Citations: 6]
  59. Artificial intelligence for solid oxide fuel cells: Combining automated high accuracy artificial neural network model generation and genetic algorithm for time-efficient performance prediction and optimization

    Mütter, Felix | Berger, Clemens | Königshofer, Benjamin | Höber, Michael | Hochenauer, Christoph | Subotić, Vanja

    Energy Conversion and Management, Vol. 291 (2023), Iss. P.117263

    https://doi.org/10.1016/j.enconman.2023.117263 [Citations: 8]
  60. SIGMA: Spectral Interpretation Using Gaussian Mixtures and Autoencoder

    Tung, Po‐Yen | Sheikh, Hassan A. | Ball, Matthew | Nabiei, Farhang | Harrison, Richard J.

    Geochemistry, Geophysics, Geosystems, Vol. 24 (2023), Iss. 1

    https://doi.org/10.1029/2022GC010530 [Citations: 1]
  61. Application-Oriented Digital Image Correlation for the High-Speed Deformation and Fracture Analysis of AISI 1045 and Ti6Al4V Materials

    Gerdes, Lars | Berger, Sebastian | Saelzer, Jannis | Franck, Pascal | Helwing, Ramon | Zabel, Andreas | Walther, Frank

    Applied Mechanics, Vol. 3 (2022), Iss. 4 P.1190

    https://doi.org/10.3390/applmech3040068 [Citations: 4]
  62. Single image dehazing algorithm based on optical diffraction deep neural networks

    Song, Mingzhu | Li, Runze | Guo, Rong | Ding, Gege | Wang, Yuezhu | Wang, Junsheng

    Optics Express, Vol. 30 (2022), Iss. 14 P.24394

    https://doi.org/10.1364/OE.458610 [Citations: 5]
  63. Physics‐Informed Machine Learning for Inverse Design of Optical Metamaterials

    Sarkar, Sulagna | Ji, Anqi | Jermain, Zachary | Lipton, Robert | Brongersma, Mark | Dayal, Kaushik | Noh, Hae Young

    Advanced Photonics Research, Vol. 4 (2023), Iss. 12

    https://doi.org/10.1002/adpr.202300158 [Citations: 6]
  64. An FPGA-Based Machine Learning Tool for In-Situ Food Quality Tracking Using Sensor Fusion

    Enériz, Daniel | Medrano, Nicolas | Calvo, Belen

    Biosensors, Vol. 11 (2021), Iss. 10 P.366

    https://doi.org/10.3390/bios11100366 [Citations: 13]
  65. Cooperative Air-Ground Instant Delivery by UAVs and Crowdsourced Taxis

    Gao, Junhui | Wang, Qianru | Zhang, Xin | Shi, Juan | Zhao, Xiang | Han, Qingye | Pan, Yan

    2024 IEEE 40th International Conference on Data Engineering (ICDE), (2024), P.4153

    https://doi.org/10.1109/ICDE60146.2024.00120 [Citations: 0]
  66. A Hybrid Deep Learning Architecture for Apple Foliar Disease Detection

    Ait Nasser, Adnane | Akhloufi, Moulay A.

    Computers, Vol. 13 (2024), Iss. 5 P.116

    https://doi.org/10.3390/computers13050116 [Citations: 2]
  67. Layer adaptive node selection in Bayesian neural networks: Statistical guarantees and implementation details

    Jantre, Sanket | Bhattacharya, Shrijita | Maiti, Tapabrata

    Neural Networks, Vol. 167 (2023), Iss. P.309

    https://doi.org/10.1016/j.neunet.2023.08.029 [Citations: 1]
  68. Hidden and Face-like Object Detection using Deep Learning Techniques - An Empirical Study

    A, Anirudh | Chakraborty, Subrata

    2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA), (2022), P.1

    https://doi.org/10.1109/DICTA56598.2022.10034632 [Citations: 0]
  69. Active Learning on Neural Networks through Interactive Generation of Digit Patterns and Visual Representation

    Jeong, Dong H. | Cho, Jin-Hee | Chen, Feng | Jøsang, Audun | Ji, Soo-Yeon

    2023 IEEE Integrated STEM Education Conference (ISEC), (2023), P.143

    https://doi.org/10.1109/ISEC57711.2023.10402169 [Citations: 0]
  70. Learning an Accurate State Transition Dynamics Model by Fitting Both a Function and its Derivative

    Kim, Youngho | Lee, Hoosang | Ryu, Jeha

    IEEE Access, Vol. 10 (2022), Iss. P.44248

    https://doi.org/10.1109/ACCESS.2022.3169798 [Citations: 1]
  71. Neural Network Model for Tissue Thickness Estimation

    Jethani, Henna | Popović, Zoya

    2024 IEEE First International Conference on Artificial Intelligence for Medicine, Health and Care (AIMHC), (2024), P.220

    https://doi.org/10.1109/AIMHC59811.2024.00047 [Citations: 0]
  72. DeepNeo: a webserver for predicting immunogenic neoantigens

    Kim, Jeong Yeon | Bang, Hyoeun | Noh, Seung-Jae | Choi, Jung Kyoon

    Nucleic Acids Research, Vol. 51 (2023), Iss. W1 P.W134

    https://doi.org/10.1093/nar/gkad275 [Citations: 12]
  73. Hidden space deep sequential risk prediction on student trajectories

    Prenkaj, Bardh | Distante, Damiano | Faralli, Stefano | Velardi, Paola

    Future Generation Computer Systems, Vol. 125 (2021), Iss. P.532

    https://doi.org/10.1016/j.future.2021.07.002 [Citations: 12]
  74. Synaptic Stripping: How Pruning Can Bring Dead Neurons Back to Life

    Whitaker, Tim | Whitley, Darrell

    2023 International Joint Conference on Neural Networks (IJCNN), (2023), P.1

    https://doi.org/10.1109/IJCNN54540.2023.10191397 [Citations: 1]
  75. An Audio Signal-based COVID-19 Detection Methodology using Modified DenseNet121

    Saha, Shrabana | Bhadra, Rajarshi | Kar, Subhajit

    2021 IEEE 18th India Council International Conference (INDICON), (2021), P.1

    https://doi.org/10.1109/INDICON52576.2021.9691766 [Citations: 2]
  76. Improved weight initialization for deep and narrow feedforward neural network

    Lee, Hyunwoo | Kim, Yunho | Yang, Seung Yeop | Choi, Hayoung

    Neural Networks, Vol. 176 (2024), Iss. P.106362

    https://doi.org/10.1016/j.neunet.2024.106362 [Citations: 1]
  77. Attention-Based Neural Network for Cardiac MRI Segmentation: Application to Strain and Volume Computation

    Portal, Nicolas | Achard, Catherine | Khan, Saud | Nguyen, Vincent | Prigent, Mikael | Zarai, Mohamed | Bouazizi, Khaoula | Sylvain, Johanne | Redheuil, Alban | Montalescot, Gilles | Kachenoura, Nadjia | Dietenbeck, Thomas

    IRBM, Vol. 45 (2024), Iss. 4 P.100850

    https://doi.org/10.1016/j.irbm.2024.100850 [Citations: 0]
  78. Development and validation of a two-stage convolutional neural network algorithm for segmentation of MRI white matter hyperintensities for longitudinal studies in CADASIL

    Demeusy, Valentin | Roche, Florent | Vincent, Fabrice | Taha, May | Zhang, Ruiting | Jouvent, Eric | Chabriat, Hugues | Lebenberg, Jessica

    Computers in Biology and Medicine, Vol. 180 (2024), Iss. P.108936

    https://doi.org/10.1016/j.compbiomed.2024.108936 [Citations: 0]
  79. Empirical study of the modulus as activation function in computer vision applications

    Vallés-Pérez, Iván | Soria-Olivas, Emilio | Martínez-Sober, Marcelino | Serrano-López, Antonio J. | Vila-Francés, Joan | Gómez-Sanchís, Juan

    Engineering Applications of Artificial Intelligence, Vol. 120 (2023), Iss. P.105863

    https://doi.org/10.1016/j.engappai.2023.105863 [Citations: 8]
  80. Computational Intelligence in Healthcare Applications

    An intelligent diagnostic technique using deep convolutional neural network

    Saha, Shrabana | Bhadra, Rajarshi | Kar, Subhajit

    2022

    https://doi.org/10.1016/B978-0-323-99031-8.00021-1 [Citations: 0]
  81. Three‐Dimensional Permeability Inversion Using Convolutional Neural Networks and Positron Emission Tomography

    Huang, Zitong | Kurotori, Takeshi | Pini, Ronny | Benson, Sally M. | Zahasky, Christopher

    Water Resources Research, Vol. 58 (2022), Iss. 3

    https://doi.org/10.1029/2021WR031554 [Citations: 11]
  82. Multipeak Wavelength Detection of Spectrally Overlapped Fiber Bragg Grating Sensors Through a CNN-Based Autoencoder

    Rudloff, Gabriel | Soto, Marcelo A.

    IEEE Sensors Journal, Vol. 24 (2024), Iss. 13 P.20674

    https://doi.org/10.1109/JSEN.2024.3400819 [Citations: 0]
  83. Image Neural Network Classifier by Detail Attributes

    Sai, S. V. | Nikonov, V. S.

    Pattern Recognition and Image Analysis, Vol. 33 (2023), Iss. 2 P.179

    https://doi.org/10.1134/S1054661823020116 [Citations: 0]
  84. Lecture Notes in Computational Intelligence and Decision Making

    Tunable Activation Functions for Deep Neural Networks

    Bilonoh, Bohdan | Bodyanskiy, Yevgeniy | Kolchygin, Bohdan | Mashtalir, Sergii

    2022

    https://doi.org/10.1007/978-3-030-82014-5_43 [Citations: 1]
  85. A Deep Convolutional Autoencoder Architecture for Automatic Image Colorization

    Cevallos, Stefano | Perez, Noel | Riofrio, Daniel | Benitez, Diego | Moyano, Ricardo Flores | Baldeon-Calisto, Maria

    2022 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), (2022), P.1

    https://doi.org/10.1109/ColCACI56938.2022.9905295 [Citations: 1]
  86. The Phenomenon of Correlated Representations in Contrastive Learning

    Klüttermann, Simon | Rutinowski, Jérôme | Müller, Emmanuel

    2024 International Joint Conference on Neural Networks (IJCNN), (2024), P.1

    https://doi.org/10.1109/IJCNN60899.2024.10649913 [Citations: 0]
  87. Less is More? Reducing Biases and Overfitting in Machine Learning Return Predictions

    Howard, Clint

    SSRN Electronic Journal, Vol. (2023), Iss.

    https://doi.org/10.2139/ssrn.4497739 [Citations: 0]
  88. DREAM: Debugging and Repairing AutoML Pipelines

    Zhang, Xiaoyu | Zhai, Juan | Ma, Shiqing | Guan, Xiaohong | Shen, Chao

    ACM Transactions on Software Engineering and Methodology, Vol. (2024), Iss.

    https://doi.org/10.1145/3702992 [Citations: 0]
  89. Segmenting 3D geometry of left coronary artery from coronary CT angiography using deep learning for hemodynamic evaluation

    Sadid, Sadman R | Kabir, Mohammed S | Mahmud, Samreen T | Islam, Md Saiful | Islam, A H M Waliul | Arafat, M Tarik

    Biomedical Physics & Engineering Express, Vol. 8 (2022), Iss. 6 P.065033

    https://doi.org/10.1088/2057-1976/ac9e03 [Citations: 0]
  90. Knowledge Graph enhanced Aspect-Based Sentiment Analysis Incorporating External Knowledge

    Teo, Autumn | Wang, Zhaoxia | Pen, Haibo | Subagdja, Budhitama | Ho, Seng-Beng | Quek, Boon Kiat

    2023 IEEE International Conference on Data Mining Workshops (ICDMW), (2023), P.791

    https://doi.org/10.1109/ICDMW60847.2023.00107 [Citations: 3]
  91. Operationalising fairness in medical AI adoption: detection of early Alzheimer’s disease with 2D CNN

    Heising, Luca | Angelopoulos, Spyros

    BMJ Health & Care Informatics, Vol. 29 (2022), Iss. 1 P.e100485

    https://doi.org/10.1136/bmjhci-2021-100485 [Citations: 8]
  92. Loss of plasticity in deep continual learning

    Dohare, Shibhansh | Hernandez-Garcia, J. Fernando | Lan, Qingfeng | Rahman, Parash | Mahmood, A. Rupam | Sutton, Richard S.

    Nature, Vol. 632 (2024), Iss. 8026 P.768

    https://doi.org/10.1038/s41586-024-07711-7 [Citations: 2]
  93. CTPlantNet: A Hybrid CNN-Transformer Architecture for Plant Disease Classification

    Nasser, Adnane Ait | Akhloufi, Moulay A.

    2022 International Conference on Microelectronics (ICM), (2022), P.156

    https://doi.org/10.1109/ICM56065.2022.10005433 [Citations: 1]
  94. Image Analysis and Processing – ICIAP 2022

    Improving Autoencoder Training Performance for Hyperspectral Unmixing with Network Reinitialisation

    Książek, Kamil | Głomb, Przemysław | Romaszewski, Michał | Cholewa, Michał | Grabowski, Bartosz | Búza, Krisztián

    2022

    https://doi.org/10.1007/978-3-031-06427-2_33 [Citations: 1]
  95. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

    Lu, Lu | Jin, Pengzhan | Pang, Guofei | Zhang, Zhongqiang | Karniadakis, George Em

    Nature Machine Intelligence, Vol. 3 (2021), Iss. 3 P.218

    https://doi.org/10.1038/s42256-021-00302-5 [Citations: 952]
  96. N-AquaRAM: A Cost-Efficient Deep Learning Accelerator for Real-Time Aquaponic Monitoring

    Siddique, Ali | Iqbal, Muhammad Azhar | Sun, Jingqi | Zhang, Xu | Vai, Mang I. | Siddique, Sunbal

    Agricultural Research, Vol. (2024), Iss.

    https://doi.org/10.1007/s40003-024-00788-6 [Citations: 0]
  97. Polynomial ridge flowfield estimation

    Scillitoe, A. | Seshadri, P. | Wong, C. Y. | Duncan, A.

    Physics of Fluids, Vol. 33 (2021), Iss. 12

    https://doi.org/10.1063/5.0064000 [Citations: 3]
  98. Breast Cancer Detection Using SEResNeXt and Swin Transformer

    Talakola, Sashank | Pattupogula, Devi Vara Prasad | Vobugari, Raja Karthik | Ummadisetty, Balaji

    2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM), (2023), P.1

    https://doi.org/10.1109/ELEXCOM58812.2023.10370058 [Citations: 0]
  99. Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks

    Avgerinos, Christos | Vretos, Nicholas | Daras, Petros

    Sensors, Vol. 23 (2023), Iss. 3 P.1325

    https://doi.org/10.3390/s23031325 [Citations: 3]
  100. Recognize the surrounding: Development and evaluation of convolutional deep networks using gammatone spectrograms and raw audio signals

    Sen Gupta, Shantanu | Hossain, Shifat | Kim, Ki-Doo

    Expert Systems with Applications, Vol. 200 (2022), Iss. P.116998

    https://doi.org/10.1016/j.eswa.2022.116998 [Citations: 2]
  101. Delve Into Neural Activations: Toward Understanding Dying Neurons

    Jiang, Ziping | Wang, Yunpeng | Li, Chang-Tsun | Angelov, Plamen | Jiang, Richard

    IEEE Transactions on Artificial Intelligence, Vol. 4 (2023), Iss. 4 P.959

    https://doi.org/10.1109/TAI.2022.3180272 [Citations: 2]
  102. Serf: Towards better training of deep neural networks using log-Softplus ERror activation Function

    Nag, Sayan | Bhattacharyya, Mayukh | Mukherjee, Anuraag | Kundu, Rohit

    2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2023), P.5313

    https://doi.org/10.1109/WACV56688.2023.00529 [Citations: 5]
  103. XDeMo: a novel deep learning framework for DNA motif mining using transformer models

    Chaurasia, Rajashree | Ghose, Udayan

    Network Modeling Analysis in Health Informatics and Bioinformatics, Vol. 13 (2024), Iss. 1

    https://doi.org/10.1007/s13721-024-00463-4 [Citations: 0]
  104. Combining data assimilation and machine learning to estimate parameters of a convective‐scale model

    Legler, S. | Janjić, T.

    Quarterly Journal of the Royal Meteorological Society, Vol. 148 (2022), Iss. 743 P.860

    https://doi.org/10.1002/qj.4235 [Citations: 10]
  105. WITHDRAWN: Novel machine learning models for flow imaging microscopy sub-visible particle classification in protein formulations

    Bassett, Robert | Mehta, Dharmini | Thompson, Scott | Al-Imarah, Emad

    International Journal of Pharmaceutics, Vol. (2023), Iss. P.123192

    https://doi.org/10.1016/j.ijpharm.2023.123192 [Citations: 0]
  106. Active Neuron Least Squares: A Training Method for Multivariate Rectified Neural Networks

    Ainsworth, Mark | Shin, Yeonjong

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 4 P.A2253

    https://doi.org/10.1137/21M1460764 [Citations: 2]
  107. The Application of Autoencoders for Hyperspectral Data Compression

    Minkin, Alexander

    2021 International Conference on Information Technology and Nanotechnology (ITNT), (2021), P.1

    https://doi.org/10.1109/ITNT52450.2021.9649318 [Citations: 3]
  108. A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions

    Cheridito, Patrick | Jentzen, Arnulf | Riekert, Adrian | Rossmannek, Florian

    Journal of Complexity, Vol. 72 (2022), Iss. P.101646

    https://doi.org/10.1016/j.jco.2022.101646 [Citations: 14]
  109. Deep-learning-assisted and GPU-accelerated vector Doppler imaging with aliasing-resistant velocity estimation

    Nahas, Hassan | Yiu, Billy Y.S. | Chee, Adrian J.Y. | Au, Jason S. | Yu, Alfred C.H.

    Ultrasonics, Vol. 134 (2023), Iss. P.107050

    https://doi.org/10.1016/j.ultras.2023.107050 [Citations: 2]
  110. Modeling non-linear effects with neural networks in Relational Event Models

    Filippi-Mazzola, Edoardo | Wit, Ernst C.

    Social Networks, Vol. 79 (2024), Iss. P.25

    https://doi.org/10.1016/j.socnet.2024.05.004 [Citations: 0]
  111. X-ray driven peanut trait estimation: computer vision aided agri-system transformation

    Domhoefer, Martha | Chakraborty, Debarati | Hufnagel, Eva | Claußen, Joelle | Wörlein, Norbert | Voorhaar, Marijn | Anbazhagan, Krithika | Choudhary, Sunita | Pasupuleti, Janila | Baddam, Rekha | Kholova, Jana | Gerth, Stefan

    Plant Methods, Vol. 18 (2022), Iss. 1

    https://doi.org/10.1186/s13007-022-00909-8 [Citations: 4]
  112. Layer-Wise External Attention by Well-Localized Attention Map for Efficient Deep Anomaly Detection

    Nakanishi, Keiichi | Shiroma, Ryo | Hayakawa, Tokihisa | Katafuchi, Ryoya | Tokunaga, Terumasa

    SN Computer Science, Vol. 5 (2024), Iss. 5

    https://doi.org/10.1007/s42979-024-02912-3 [Citations: 0]
  113. A Study of Features and Deep Neural Network Architectures and Hyper-Parameters for Domestic Audio Classification

    Copiaco, Abigail | Ritz, Christian | Abdulaziz, Nidhal | Fasciani, Stefano

    Applied Sciences, Vol. 11 (2021), Iss. 11 P.4880

    https://doi.org/10.3390/app11114880 [Citations: 14]
  114. Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components

    Chung, Jeehun | Lee, Yonggwan | Kim, Jinuk | Jung, Chunggil | Kim, Seongjoon

    Remote Sensing, Vol. 14 (2022), Iss. 3 P.465

    https://doi.org/10.3390/rs14030465 [Citations: 20]
  115. Regularised feed forward neural networks for streamed data classification problems

    Ellis, Mathys | Bosman, Anna S. | Engelbrecht, Andries P.

    Engineering Applications of Artificial Intelligence, Vol. 133 (2024), Iss. P.108555

    https://doi.org/10.1016/j.engappai.2024.108555 [Citations: 1]
  116. Lifelong deep learning‐based control of robot manipulators

    Ganie, Irfan | Sarangapani, Jagannathan

    International Journal of Adaptive Control and Signal Processing, Vol. 37 (2023), Iss. 12 P.3169

    https://doi.org/10.1002/acs.3678 [Citations: 0]
  117. Editorial

    Chen, Chi-Hua | Chao, Kuo-Ming | Hwang, Feng-Jang | Han, Chunjia | Pu, Lianrong

    International Journal of Distributed Sensor Networks, Vol. 17 (2021), Iss. 2 P.155014772199288

    https://doi.org/10.1177/1550147721992881 [Citations: 0]
  118. Age Prediction by DNA Methylation in Neural Networks

    Li, Lechuan | Zhang, Chonghao | Liu, Shiyu | Guan, Hannah | Zhang, Yu

    IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 19 (2022), Iss. 3 P.1393

    https://doi.org/10.1109/TCBB.2021.3084596 [Citations: 7]
  119. Functional loops: Monitoring functional organization of deep neural networks using algebraic topology

    Zhang, Ben | Lin, Hongwei

    Neural Networks, Vol. 174 (2024), Iss. P.106239

    https://doi.org/10.1016/j.neunet.2024.106239 [Citations: 3]
  120. Flex-SFU: Accelerating DNN Activation Functions by Non-Uniform Piecewise Approximation

    Reggiani, Enrico | Andri, Renzo | Cavigelli, Lukas

    2023 60th ACM/IEEE Design Automation Conference (DAC), (2023), P.1

    https://doi.org/10.1109/DAC56929.2023.10247855 [Citations: 2]
  121. Uncertainty quantification in Neural Networks by Approximate Bayesian Computation: Application to fatigue in composite materials

    Fernández, Juan | Chiachío, Manuel | Chiachío, Juan | Muñoz, Rafael | Herrera, Francisco

    Engineering Applications of Artificial Intelligence, Vol. 107 (2022), Iss. P.104511

    https://doi.org/10.1016/j.engappai.2021.104511 [Citations: 33]
  122. Diagnosis of COVID-19 and Pneumonia using Depthwise Separable Convolutional Neural Network

    Saha, Shrabana | Bhadra, Rajarshi | Kar, Subhajit

    2021 IEEE Bombay Section Signature Conference (IBSSC), (2021), P.1

    https://doi.org/10.1109/IBSSC53889.2021.9673215 [Citations: 1]
  123. Adaptive Morphing Activation Function for Neural Networks

    Herrera-Alcántara, Oscar | Arellano-Balderas, Salvador

    Fractal and Fractional, Vol. 8 (2024), Iss. 8 P.444

    https://doi.org/10.3390/fractalfract8080444 [Citations: 0]
  124. A Distributed Machine Learning-Based Approach for IRS-Enhanced Cell-Free MIMO Networks

    Chen, Chen | Xu, Sai | Zhang, Jiliang | Zhang, Jie

    IEEE Transactions on Wireless Communications, Vol. 23 (2024), Iss. 5 P.5287

    https://doi.org/10.1109/TWC.2023.3325772 [Citations: 11]
  125. Fuzzy-based collective pitch control for wind turbine via deep reinforcement learning

    Nabeel, Abdelhamid | Lasheen, Ahmed | Elshafei, Abdel Latif | Aboul Zahab, Essam

    ISA Transactions, Vol. 148 (2024), Iss. P.307

    https://doi.org/10.1016/j.isatra.2024.03.023 [Citations: 1]
  126. Federated Learning-Based Channel Estimation for RIS-Aided Communication Systems

    Qiu, Bin | Chang, Xiao | Li, Xian | Xiao, Hailin | Zhang, Zhongshan

    IEEE Wireless Communications Letters, Vol. 13 (2024), Iss. 8 P.2130

    https://doi.org/10.1109/LWC.2024.3402968 [Citations: 0]
  127. Forecasting Surface Velocity Fields Associated With Laboratory Seismic Cycles Using Deep Learning

    Mastella, G. | Corbi, F. | Bedford, J. | Funiciello, F. | Rosenau, M.

    Geophysical Research Letters, Vol. 49 (2022), Iss. 15

    https://doi.org/10.1029/2022GL099632 [Citations: 2]
  128. Principle of TEM alignment using convolutional neural networks: Case study on condenser aperture alignment

    Grossetête, Loïc | Marcelot, Cécile | Gatel, Christophe | Pauchet, Sylvain | Hytch, Martin

    Ultramicroscopy, Vol. 267 (2024), Iss. P.114047

    https://doi.org/10.1016/j.ultramic.2024.114047 [Citations: 0]
  129. Using personalized next session to improve session-based recommender systems

    Chen, Yen-Liang | Wu, Chia-Chi | Shih, Po-Cheng

    The Journal of Supercomputing, Vol. 80 (2024), Iss. 6 P.7369

    https://doi.org/10.1007/s11227-023-05743-w [Citations: 0]
  130. Adaptive Activation Functions for Deep Learning-based Power Flow Analysis

    Kaseb, Zeynab | Xiang, Yu | Palensky, Peter | Vergara, Pedro P.

    2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), (2023), P.1

    https://doi.org/10.1109/ISGTEUROPE56780.2023.10407913 [Citations: 0]
  131. Estimating permeability of 3D micro-CT images by physics-informed CNNs based on DNS

    Gärttner, Stephan | Alpak, Faruk O. | Meier, Andreas | Ray, Nadja | Frank, Florian

    Computational Geosciences, Vol. 27 (2023), Iss. 2 P.245

    https://doi.org/10.1007/s10596-022-10184-0 [Citations: 15]
  132. A Novel Visuo-Tactile Object Recognition Pipeline using Transformers with Feature Level Fusion

    Doherty, John | Gardiner, Bryan | Siddique, Nazmul | Kerr, Emmett

    2024 International Joint Conference on Neural Networks (IJCNN), (2024), P.1

    https://doi.org/10.1109/IJCNN60899.2024.10650147 [Citations: 0]
  133. Pattern Recognition Applications and Methods

    Reduced Precision Research of a GAN Image Generation Use-case

    Rehm, Florian | Saletore, Vikram | Vallecorsa, Sofia | Borras, Kerstin | Krücker, Dirk

    2023

    https://doi.org/10.1007/978-3-031-24538-1_1 [Citations: 0]
  134. Hybrid COVID-19 segmentation and recognition framework (HMB-HCF) using deep learning and genetic algorithms

    Balaha, Hossam Magdy | Balaha, Magdy Hassan | Ali, Hesham Arafat

    Artificial Intelligence in Medicine, Vol. 119 (2021), Iss. P.102156

    https://doi.org/10.1016/j.artmed.2021.102156 [Citations: 27]
  135. Numerical Analysis Meets Machine Learning

    Theoretical foundations of physics-informed neural networks and deep neural operators

    Shin, Yeonjong | Zhang, Zhongqiang | Karniadakis, George Em

    2024

    https://doi.org/10.1016/bs.hna.2024.05.008 [Citations: 0]
  136. Streamlining latent spaces in machine learning using moment pooling

    Gambhir, Rikab | Osathapan, Athis | Thaler, Jesse

    Physical Review D, Vol. 110 (2024), Iss. 7

    https://doi.org/10.1103/PhysRevD.110.074020 [Citations: 0]
  137. Applications of Neural Networks in Biomedical Data Analysis

    Weiss, Romano | Karimijafarbigloo, Sanaz | Roggenbuck, Dirk | Rödiger, Stefan

    Biomedicines, Vol. 10 (2022), Iss. 7 P.1469

    https://doi.org/10.3390/biomedicines10071469 [Citations: 13]
  138. CACTO: Continuous Actor-Critic With Trajectory Optimization—Towards Global Optimality

    Grandesso, Gianluigi | Alboni, Elisa | Papini, Gastone P. Rosati | Wensing, Patrick M. | Prete, Andrea Del

    IEEE Robotics and Automation Letters, Vol. 8 (2023), Iss. 6 P.3318

    https://doi.org/10.1109/LRA.2023.3266985 [Citations: 5]
  139. Intrusion Detection System Model Based on Gated Recurrent Unit to Detect Anomaly Traffic

    Alsyaibani, Omar Muhammad Altoumi | Utami, Ema | Hartanto, Anggit Dwi

    2021 4th International Conference on Information and Communications Technology (ICOIACT), (2021), P.5

    https://doi.org/10.1109/ICOIACT53268.2021.9564003 [Citations: 2]
  140. The limitation of neural nets for approximation and optimization

    Giovannelli, T. | Sohab, O. | Vicente, L. N.

    Journal of Global Optimization, Vol. (2024), Iss.

    https://doi.org/10.1007/s10898-024-01426-9 [Citations: 0]
  141. Identifying algorithm in program code based on structural features using CNN classification model

    Watanobe, Yutaka | Rahman, Md. Mostafizer | Amin, Md. Faizul Ibne | Kabir, Raihan

    Applied Intelligence, Vol. 53 (2023), Iss. 10 P.12210

    https://doi.org/10.1007/s10489-022-04078-y [Citations: 16]
  142. Mapping Atomic-Scale Metal–Molecule Interactions: Salient Feature Extraction through Autoencoding of Vibrational Spectroscopy Data

    Poppe, Alex | Griffiths, Jack | Hu, Shu | Baumberg, Jeremy J. | Osadchy, Margarita | Gibson, Stuart | de Nijs, Bart

    The Journal of Physical Chemistry Letters, Vol. 14 (2023), Iss. 34 P.7603

    https://doi.org/10.1021/acs.jpclett.3c01483 [Citations: 2]