A Shifted-Inverse Adaptive Multigrid Method for the Elastic Eigenvalue Problem

A Shifted-Inverse Adaptive Multigrid Method for the Elastic Eigenvalue Problem

Year:    2020

Author:    Bo Gong, Jiayu Han, Jiguang Sun, Zhimin Zhang

Communications in Computational Physics, Vol. 27 (2020), Iss. 1 : pp. 251–273

Abstract

A shifted-inverse iteration is proposed for the finite element discretization of the elastic eigenvalue problem. The method integrates the multigrid scheme and adaptive algorithm to achieve high efficiency and accuracy. Error estimates and optimal convergence for the proposed method are proved. Numerical examples show that the proposed method inherits the advantages of both ingredients and can compute low regularity eigenfunctions effectively.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2018-0293

Communications in Computational Physics, Vol. 27 (2020), Iss. 1 : pp. 251–273

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    23

Keywords:    Elastic eigenvalue problem shifted-inverse iteration adaptive multigrid method.

Author Details

Bo Gong

Jiayu Han

Jiguang Sun

Zhimin Zhang

  1. The multigrid discretization of mixed discontinuous Galerkin method for the biharmonic eigenvalue problem

    Feng, Jinhua | Wang, Shixi | Bi, Hai | Yang, Yidu

    Mathematical Methods in the Applied Sciences, Vol. (2024), Iss.

    https://doi.org/10.1002/mma.10455 [Citations: 0]
  2. An adaptive finite element method for the elastic transmission eigenvalue problem

    Zhang, Xuqing | Han, Jiayu | Yang, Yidu

    Discrete and Continuous Dynamical Systems - B, Vol. 28 (2023), Iss. 2 P.1367

    https://doi.org/10.3934/dcdsb.2022126 [Citations: 0]
  3. A locking‐free shifted inverse iteration based on multigrid discretization for the elastic eigenvalue problem

    Zhang, Xuqing | Yang, Yidu | Zhang, Yu

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 7 P.5821

    https://doi.org/10.1002/mma.7150 [Citations: 2]
  4. Guaranteed Lower Bounds for the Elastic Eigenvalues by Using the Nonconforming Crouzeix–Raviart Finite Element

    Zhang, Xuqing | Zhang, Yu | Yang, Yidu

    Mathematics, Vol. 8 (2020), Iss. 8 P.1252

    https://doi.org/10.3390/math8081252 [Citations: 3]
  5. An efficient adaptive multigrid method for the elasticity eigenvalue problem

    Xu, Fei | Huang, Qiumei | Xie, Manting

    BIT Numerical Mathematics, Vol. 62 (2022), Iss. 4 P.2005

    https://doi.org/10.1007/s10543-022-00939-7 [Citations: 0]
  6. STABILIZED TWO-GRID DISCRETIZATIONS OF LOCKING FREE FOR THE ELASTICITY EIGENVALUE PROBLEM

    Zhang, Xuqing | Yang, Yidu | Bi, Hai

    Journal of Applied Analysis & Computation, Vol. 14 (2024), Iss. 4 P.1831

    https://doi.org/10.11948/20220048 [Citations: 0]
  7. Multigrid methods for the modified elastic transmission eigenvalue problem

    Zhang, Xuqing | Han, Jiayu

    Computers & Mathematics with Applications, Vol. 142 (2023), Iss. P.31

    https://doi.org/10.1016/j.camwa.2023.04.006 [Citations: 1]
  8. An Adaptive Finite Element Scheme for the Hellinger–Reissner Elasticity Mixed Eigenvalue Problem

    Bertrand, Fleurianne | Boffi, Daniele | Ma, Rui

    Computational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 3 P.501

    https://doi.org/10.1515/cmam-2020-0034 [Citations: 6]
  9. An adaptive algorithm for Steklov eigenvalues of the Lamé operator in linear elasticity

    Li, Hao | Zhang, Yu

    Computational and Applied Mathematics, Vol. 43 (2024), Iss. 4

    https://doi.org/10.1007/s40314-024-02736-0 [Citations: 0]
  10. A new type of full multigrid method for the elasticity eigenvalue problem

    Xu, Fei | Huang, Qiumei | Ma, Hongkun

    Numerical Methods for Partial Differential Equations, Vol. 37 (2021), Iss. 1 P.444

    https://doi.org/10.1002/num.22535 [Citations: 0]