Multiscale Computations for the Maxwell–Schrödinger System in Heterogeneous Nanostructures

Multiscale Computations for the Maxwell–Schrödinger System in Heterogeneous Nanostructures

Year:    2020

Author:    Chupeng Ma, Jizu Huang, Liqun Cao, Yanping Lin

Communications in Computational Physics, Vol. 27 (2020), Iss. 5 : pp. 1443–1469

Abstract

In this paper, we study the multiscale computations for the Maxwell– Schrödinger system with rapidly oscillating coefficients under the dipole approximation that describes light-matter interaction in heterogeneous nanostructures. The multiscale asymptotic method and an associated numerical algorithm for the system are presented. We propose an alternating Crank–Nicolson finite element method for solving the homogenized Maxwell–Schödinger system and prove the existence of solutions to the discrete system. Numerical examples are given to validate the efficiency and accuracy of the algorithm.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2019-0004

Communications in Computational Physics, Vol. 27 (2020), Iss. 5 : pp. 1443–1469

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    27

Keywords:    Maxwell–Schrödinger system homogenization multiscale asymptotic method Crank–Nicolson scheme.

Author Details

Chupeng Ma

Jizu Huang

Liqun Cao

Yanping Lin

  1. A Semi-implicit Stochastic Multiscale Method for Radiative Heat Transfer Problem in Composite Materials

    Zhang, Shan

    Wang, Yajun

    Guan, Xiaofei

    Journal of Scientific Computing, Vol. 102 (2025), Iss. 1

    https://doi.org/10.1007/s10915-024-02730-y [Citations: 0]