Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

An Adaptive Conservative Finite Volume Method for Poisson-Nernst-Planck Equations on a Moving Mesh

An Adaptive Conservative Finite Volume Method for Poisson-Nernst-Planck Equations on a Moving Mesh

Year:    2019

Author:    Xiulei Cao, Huaxiong Huang

Communications in Computational Physics, Vol. 26 (2019), Iss. 2 : pp. 389–412

Abstract

In this paper, we present a finite volume method for solving Poisson-Nernst-Planck (PNP) equations in one spatial dimension. To reduce computational cost, an adaptive moving mesh strategy is employed in order to resolve thin Debye layers near the boundary. In addition to the standard monitor functions, we propose two new ones for the moving mesh partial differential equations to improve the accuracy of the numerical solution. The method guarantees the strict mass conservation. We have proved that the scheme maintains positivity on the adaptive moving mesh which has not been done for PNP.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2018-0134

Communications in Computational Physics, Vol. 26 (2019), Iss. 2 : pp. 389–412

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    Poisson-Nernst-Planck finite volume method adaptive moving mesh mass conservation.

Author Details

Xiulei Cao Email

Huaxiong Huang Email

  1. A structure preserving hybrid finite volume scheme for semiconductor models with magnetic field on general meshes

    Moatti, Julien

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 57 (2023), Iss. 4 P.2557

    https://doi.org/10.1051/m2an/2023041 [Citations: 1]
  2. A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes

    Liu, Yang | Shu, Shi | Wei, Huayi | Yang, Ying

    Computers & Mathematics with Applications, Vol. 102 (2021), Iss. P.95

    https://doi.org/10.1016/j.camwa.2021.10.002 [Citations: 4]
  3. Adaptive temporal mesh equidistribution for studying the singularly perturbed delay-in-time parabolic equations

    Sultan, Saad | Zhang, Zhengce

    Zeitschrift für angewandte Mathematik und Physik, Vol. 76 (2025), Iss. 1

    https://doi.org/10.1007/s00033-024-02358-w [Citations: 0]
  4. A positivity-preserving and free energy dissipative hybrid scheme for the Poisson-Nernst-Planck equations on polygonal and polyhedral meshes

    Su, Shuai | Tang, Huazhong

    Computers & Mathematics with Applications, Vol. 108 (2022), Iss. P.33

    https://doi.org/10.1016/j.camwa.2021.12.019 [Citations: 7]
  5. A meshless stochastic method for Poisson–Nernst–Planck equations

    Monteiro, Henrique B. N. | Tartakovsky, Daniel M.

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 5

    https://doi.org/10.1063/5.0223018 [Citations: 0]
  6. Magneto-thermo-gravitational Rayleigh–Bénard convection of an electro-conductive micropolar fluid in a square enclosure: Finite volume computation

    Venkatadri, K. | Ramachandra Prasad, V. | Anwar Bég, O. | Kuharat, S. | Bég, T.A. | Saha, Sandip

    Numerical Heat Transfer, Part A: Applications, Vol. (2024), Iss. P.1

    https://doi.org/10.1080/10407782.2023.2299290 [Citations: 2]