A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes

A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes

Year:    2019

Communications in Computational Physics, Vol. 26 (2019), Iss. 2 : pp. 558–578

Abstract

In this paper, we present a simple a posteriori error estimate for the weak Galerkin (WG) finite element method for a model second order elliptic equation. This residual type estimator can be applied to general meshes such as hybrid, polytopal and those with hanging nodes. We prove the reliability and efficiency of the estimator. Extensive numerical tests demonstrate the effectiveness and flexibility of the mesh refinement guided by this error estimator.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2018-0058

Communications in Computational Physics, Vol. 26 (2019), Iss. 2 : pp. 558–578

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Weak Galerkin finite element methods second-order elliptic problems a posteriori error estimate polytopal meshes.

  1. Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

    Xie, Yingying | Zhong, Liuqiang

    Journal of Scientific Computing, Vol. 86 (2021), Iss. 1

    https://doi.org/10.1007/s10915-020-01387-7 [Citations: 6]
  2. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition

    Xie, Shenglan | Han, Maoan | Zhu, Peng

    Discrete & Continuous Dynamical Systems - B, Vol. 26 (2021), Iss. 10 P.5217

    https://doi.org/10.3934/dcdsb.2020340 [Citations: 0]
  3. A Posteriori Error Estimates of Edge Residual-Type of Weak Galerkin Mixed FEM Solving Second-Order Elliptic Problems on Polytopal Mesh

    Wang, Huijuan | Xu, Shipeng | He, Xiaoxiao

    International Journal of Computational Methods, Vol. 19 (2022), Iss. 05

    https://doi.org/10.1142/S0219876222500104 [Citations: 2]
  4. A Posteriori Error Estimates for Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

    Cangiani, Andrea | Dong, Zhaonan | Georgoulis, Emmanuil H.

    SIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 5 P.2352

    https://doi.org/10.1137/22M1516701 [Citations: 0]
  5. Convergence of an adaptive modified WG method for second-order elliptic problem

    Xie, Yingying | Zhong, Liuqiang | Zeng, Yuping

    Numerical Algorithms, Vol. 90 (2022), Iss. 2 P.789

    https://doi.org/10.1007/s11075-021-01209-3 [Citations: 3]
  6. A posteriori error estimate of a weak Galerkin finite element method for solving linear elasticity problems

    Liu, Chunmei | Xie, Yingying | Zhong, Liuqiang | Zhou, Liping

    Computers & Mathematics with Applications, Vol. 173 (2024), Iss. P.47

    https://doi.org/10.1016/j.camwa.2024.07.027 [Citations: 0]
  7. Convergence and optimality of an adaptive modified weak Galerkin finite element method

    Yingying, Xie | Cao, Shuhao | Chen, Long | Zhong, Liuqiang

    Numerical Methods for Partial Differential Equations, Vol. 39 (2023), Iss. 5 P.3847

    https://doi.org/10.1002/num.23027 [Citations: 0]
  8. A posteriori error estimates of two-grid weak Galerkin methods for semilinear elliptic differential equations

    Chen, Luoping | Dai, Jiajia | Wen, Yiming

    Applied Numerical Mathematics, Vol. 187 (2023), Iss. P.277

    https://doi.org/10.1016/j.apnum.2023.02.019 [Citations: 2]
  9. Analysis of a weak Galerkin method for second-order elliptic equations with minimal regularity on polytopal meshes

    Liu, Kaifang | Zhu, Peng

    Journal of Computational and Applied Mathematics, Vol. 420 (2023), Iss. P.114744

    https://doi.org/10.1016/j.cam.2022.114744 [Citations: 0]
  10. A posteriori error estimate of the weak Galerkin finite element method solving the Stokes problems on polytopal meshes

    Xu, Shipeng

    Numerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 5

    https://doi.org/10.1002/num.23102 [Citations: 0]
  11. Robust a-posteriori error estimates for weak Galerkin method for the convection-diffusion problem

    Sharma, Natasha

    Applied Numerical Mathematics, Vol. 170 (2021), Iss. P.384

    https://doi.org/10.1016/j.apnum.2021.08.007 [Citations: 3]
  12. A recovery-based a posteriori error estimator of the weak Galerkin finite element method for elliptic problems

    Liu, Ying | Wang, Gang | Wu, Mengyao | Nie, Yufeng

    Journal of Computational and Applied Mathematics, Vol. 406 (2022), Iss. P.113926

    https://doi.org/10.1016/j.cam.2021.113926 [Citations: 4]
  13. A posteriori error estimates for weak Galerkin methods for second order elliptic problems on polygonal meshes

    Xu, Shipeng

    Applied Numerical Mathematics, Vol. 161 (2021), Iss. P.510

    https://doi.org/10.1016/j.apnum.2020.12.005 [Citations: 7]
  14. A posteriori error estimate for a WG method of H(curl)-elliptic problems

    Peng, Jie | Xie, Yingying | Zhong, Liuqiang

    Journal of Numerical Mathematics, Vol. 32 (2024), Iss. 2 P.157

    https://doi.org/10.1515/jnma-2023-0014 [Citations: 0]
  15. Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes

    Mu, Lin

    Journal of Computational and Applied Mathematics, Vol. 361 (2019), Iss. P.413

    https://doi.org/10.1016/j.cam.2019.04.026 [Citations: 17]