Central WENO Subcell Finite Volume Limiters for ADER Discontinuous Galerkin Schemes on Fixed and Moving Unstructured Meshes

Central WENO Subcell Finite Volume Limiters for ADER Discontinuous Galerkin Schemes on Fixed and Moving Unstructured Meshes

Year:    2019

Communications in Computational Physics, Vol. 25 (2019), Iss. 2 : pp. 311–346

Abstract

We present a novel a posteriori subcell finite volume limiter for high order discontinuous Galerkin (DG) finite element schemes for the solution of nonlinear hyperbolic PDE systems in multiple space dimensions on fixed and moving unstructured simplex meshes. The numerical method belongs to the family of high order fully discrete one-step ADER-DG schemes [12, 45] and makes use of an element-local space-time Galerkin finite element predictor. Our limiter is based on the MOOD paradigm, in which the discrete solution of the high order DG scheme is checked a posteriori against a set of physical and numerical admissibility criteria, in order to detect spurious oscillations or unphysical solutions and in order to identify the so-called troubled cells. Within the detected troubled cells the discrete solution is then discarded and recomputed locally with a more robust finite volume method on a fine subgrid.
In this work, we propose for the first time to use a high order ADER-CWENO finite volume scheme as subcell finite volume limiter on unstructured simplex meshes, instead of a classical second order TVD scheme. Our new numerical scheme has been developed both for fixed Eulerian meshes as well as for moving Lagrangian grids. It has been carefully validated against a set of typical benchmark problems for the compressible Euler equations of gas dynamics and for the equations of ideal magnetohydrodynamics (MHD).

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2018-0069

Communications in Computational Physics, Vol. 25 (2019), Iss. 2 : pp. 311–346

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    36

Keywords:    Discontinuous Galerkin (DG) methods high order ADER schemes subcell finite volume limiter central WENO reconstruction (CWENO) Arbitrary-Lagrangian-Eulerian schemes moving unstructured meshes hyperbolic conservation laws Euler and MHD equations.

  1. High Order ADER Schemes for Continuum Mechanics

    Busto, Saray | Chiocchetti, Simone | Dumbser, Michael | Gaburro, Elena | Peshkov, Ilya

    Frontiers in Physics, Vol. 8 (2020), Iss.

    https://doi.org/10.3389/fphy.2020.00032 [Citations: 54]
  2. A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change

    Gaburro, Elena

    Archives of Computational Methods in Engineering, Vol. 28 (2021), Iss. 3 P.1249

    https://doi.org/10.1007/s11831-020-09411-7 [Citations: 21]
  3. A high-order nonlinear limiter for discontinuous Galerkin method on parallel adaptive Cartesian grids

    Qi, Xinyu | Wang, Zhenming | Zhu, Jun | Tian, Linlin | Zhao, Ning

    Physics of Fluids, Vol. 35 (2023), Iss. 3

    https://doi.org/10.1063/5.0138993 [Citations: 6]
  4. A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes

    Zhu, Jun | Shu, Chi-Wang

    Journal of Computational Physics, Vol. 406 (2020), Iss. P.109212

    https://doi.org/10.1016/j.jcp.2019.109212 [Citations: 27]
  5. An all Froude high order IMEX scheme for the shallow water equations on unstructured Voronoi meshes

    Boscheri, Walter | Tavelli, Maurizio | Castro, Cristóbal E.

    Applied Numerical Mathematics, Vol. 185 (2023), Iss. P.311

    https://doi.org/10.1016/j.apnum.2022.11.022 [Citations: 9]
  6. High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Gaburro, Elena | Boscheri, Walter | Chiocchetti, Simone | Klingenberg, Christian | Springel, Volker | Dumbser, Michael

    Journal of Computational Physics, Vol. 407 (2020), Iss. P.109167

    https://doi.org/10.1016/j.jcp.2019.109167 [Citations: 72]
  7. A relaxed a posteriori MOOD algorithm for multicomponent compressible flows using high-order finite-volume methods on unstructured meshes

    Tsoutsanis, Panagiotis | Pavan Kumar, Machavolu Sai Santosh | Farmakis, Pericles S.

    Applied Mathematics and Computation, Vol. 437 (2023), Iss. P.127544

    https://doi.org/10.1016/j.amc.2022.127544 [Citations: 2]
  8. EBR schemes with curvilinear reconstructions for hybrid meshes

    Bakhvalov, Pavel | Kozubskaya, Tatiana | Rodionov, Pavel

    Computers & Fluids, Vol. 239 (2022), Iss. P.105352

    https://doi.org/10.1016/j.compfluid.2022.105352 [Citations: 5]
  9. High-Order Finite-Volume TENO Schemes with Dual ENO-Like Stencil Selection for Unstructured Meshes

    Ji, Zhe | Liang, Tian | Fu, Lin

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 3

    https://doi.org/10.1007/s10915-023-02199-1 [Citations: 8]
  10. A revised WENO‐THINC scheme for the general structured mesh and applications in the direct numerical simulation of compressible turbulent flows

    Li, Jingqi | Liu, Cheng | Li, Zheng

    International Journal for Numerical Methods in Fluids, Vol. 95 (2023), Iss. 9 P.1372

    https://doi.org/10.1002/fld.5196 [Citations: 1]
  11. Optimal Definition of the Nonlinear Weights in Multidimensional Central WENOZ Reconstructions

    Cravero, I. | Semplice, M. | Visconti, G.

    SIAM Journal on Numerical Analysis, Vol. 57 (2019), Iss. 5 P.2328

    https://doi.org/10.1137/18M1228232 [Citations: 17]
  12. UCNS3D: An open-source high-order finite-volume unstructured CFD solver

    Antoniadis, Antonis F. | Drikakis, Dimitris | Farmakis, Pericles S. | Fu, Lin | Kokkinakis, Ioannis | Nogueira, Xesús | Silva, Paulo A.S.F. | Skote, Martin | Titarev, Vladimir | Tsoutsanis, Panagiotis

    Computer Physics Communications, Vol. 279 (2022), Iss. P.108453

    https://doi.org/10.1016/j.cpc.2022.108453 [Citations: 28]
  13. A fifth-order low-dissipation discontinuity-resolving TENO scheme for compressible flow simulation

    Liang, Tian | Xiao, Feng | Shyy, Wei | Fu, Lin

    Journal of Computational Physics, Vol. 467 (2022), Iss. P.111465

    https://doi.org/10.1016/j.jcp.2022.111465 [Citations: 28]
  14. An improved discontinuity sensor for high-order weighted essentially non-oscillatory scheme on triangular meshes

    Wang, Zhenming | Tian, Linlin | Zhu, Jun | Zhao, Ning

    Journal of Computational Physics, Vol. 490 (2023), Iss. P.112299

    https://doi.org/10.1016/j.jcp.2023.112299 [Citations: 1]
  15. Computational Algorithms for Shallow Water Equations

    ADER High-Order Methods

    Toro, Eleuterio F.

    2024

    https://doi.org/10.1007/978-3-031-61395-1_14 [Citations: 0]
  16. Third‐ and fourth‐order well‐balanced schemes for the shallow water equations based on the CWENO reconstruction

    Castro, Manuel J. | Semplice, Matteo

    International Journal for Numerical Methods in Fluids, Vol. 89 (2019), Iss. 8 P.304

    https://doi.org/10.1002/fld.4700 [Citations: 20]
  17. Hyperbolic Problems: Theory, Numerics, Applications. Volume I

    The ADER Approach for Approximating Hyperbolic Equations to Very High Accuracy

    Toro, Eleuterio F. | Titarev, Vladimir | Dumbser, Michael | Iske, Armin | Goetz, Claus R. | Castro, Cristóbal E. | Montecinos, Gino I. | Demattè, Riccardo

    2024

    https://doi.org/10.1007/978-3-031-55260-1_5 [Citations: 1]
  18. A new family of downwind-limited, scale-invariant WENO schemes with optimal accuracy

    Jin, Peng | Al-Rikabi, Ahmed | Deng, Xi

    Computers & Fluids, Vol. 264 (2023), Iss. P.105962

    https://doi.org/10.1016/j.compfluid.2023.105962 [Citations: 0]
  19. A Posteriori Subcell Finite Volume Limiter for General $$P_NP_M$$ Schemes: Applications from Gasdynamics to Relativistic Magnetohydrodynamics

    Gaburro, Elena | Dumbser, Michael

    Journal of Scientific Computing, Vol. 86 (2021), Iss. 3

    https://doi.org/10.1007/s10915-020-01405-8 [Citations: 19]
  20. Arbitrary high order central non-oscillatory schemes on mixed-element unstructured meshes

    Tsoutsanis, Panagiotis | Dumbser, Michael

    Computers & Fluids, Vol. 225 (2021), Iss. P.104961

    https://doi.org/10.1016/j.compfluid.2021.104961 [Citations: 34]
  21. A cell-centered discontinuous Galerkin multi-material arbitrary Lagrangian-Eulerian method in axisymmetric geometry

    Qing, Fang | Jia, Zupeng | Liu, Liqi

    Journal of Computational Physics, Vol. 473 (2023), Iss. P.111745

    https://doi.org/10.1016/j.jcp.2022.111745 [Citations: 5]
  22. High-Order CENO Finite-Volume Scheme with Anisotropic Adaptive Mesh Refinement: Efficient Inexact Newton Method for Steady Three-Dimensional Flows

    Freret, L. | Ngigi, C. N. | Nguyen, T. B. | De Sterck, H. | Groth, C. P. T.

    Journal of Scientific Computing, Vol. 94 (2023), Iss. 3

    https://doi.org/10.1007/s10915-022-02068-3 [Citations: 0]
  23. Efficient Implementation of Adaptive Order Reconstructions

    Semplice, M. | Visconti, G.

    Journal of Scientific Computing, Vol. 83 (2020), Iss. 1

    https://doi.org/10.1007/s10915-020-01156-6 [Citations: 13]
  24. A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer–Nunziato model

    Kemm, Friedemann | Gaburro, Elena | Thein, Ferdinand | Dumbser, Michael

    Computers & Fluids, Vol. 204 (2020), Iss. P.104536

    https://doi.org/10.1016/j.compfluid.2020.104536 [Citations: 36]
  25. Subcell limiting strategies for discontinuous Galerkin spectral element methods

    Rueda-Ramírez, Andrés M. | Pazner, Will | Gassner, Gregor J.

    Computers & Fluids, Vol. 247 (2022), Iss. P.105627

    https://doi.org/10.1016/j.compfluid.2022.105627 [Citations: 22]
  26. High order modal Discontinuous Galerkin Implicit–Explicit Runge Kutta and Linear Multistep schemes for the Boltzmann model on general polygonal meshes

    Boscheri, Walter | Dimarco, Giacomo

    Computers & Fluids, Vol. 233 (2022), Iss. P.105224

    https://doi.org/10.1016/j.compfluid.2021.105224 [Citations: 7]
  27. Towards Building the OP-Mapped WENO Schemes: A General Methodology

    Li, Ruo | Zhong, Wei

    Mathematical and Computational Applications, Vol. 26 (2021), Iss. 4 P.67

    https://doi.org/10.3390/mca26040067 [Citations: 0]
  28. High order direct Arbitrary-Lagrangian-Eulerian (ALE) PP schemes with WENO Adaptive-Order reconstruction on unstructured meshes

    Boscheri, Walter | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 398 (2019), Iss. P.108899

    https://doi.org/10.1016/j.jcp.2019.108899 [Citations: 24]