Particle Based gPC Methods for Mean-Field Models of Swarming with Uncertainty

Year:    2019

Communications in Computational Physics, Vol. 25 (2019), Iss. 2 : pp. 508–531

Abstract

In this work we focus on the construction of numerical schemes for the approximation of stochastic mean-field equations which preserve the nonnegativity of the solution. The method here developed makes use of a mean-field Monte Carlo method in the physical variables combined with a generalized Polynomial Chaos (gPC) expansion in the random space. In contrast to a direct application of stochastic-Galerkin methods, which are highly accurate but lead to the loss of positivity, the proposed schemes are capable to achieve high accuracy in the random space without loosing nonnegativity of the solution. Several applications of the schemes to mean-field models of collective behavior are reported.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2017-0244

Communications in Computational Physics, Vol. 25 (2019), Iss. 2 : pp. 508–531

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    Uncertainty quantification stochastic Galerkin mean-field equations swarming dynamics.

  1. Kinetic-controlled hydrodynamics for multilane traffic models

    Borsche, Raul | Klar, Axel | Zanella, Mattia

    Physica A: Statistical Mechanics and its Applications, Vol. 587 (2022), Iss. P.126486

    https://doi.org/10.1016/j.physa.2021.126486 [Citations: 7]
  2. On the mean field limit of the Random Batch Method for interacting particle systems

    Jin, Shi | Li, Lei

    Science China Mathematics, Vol. 65 (2022), Iss. 1 P.169

    https://doi.org/10.1007/s11425-020-1810-6 [Citations: 8]
  3. Active Particles, Volume 3

    Random Batch Methods for Classical and Quantum Interacting Particle Systems and Statistical Samplings

    Jin, Shi | Li, Lei

    2022

    https://doi.org/10.1007/978-3-030-93302-9_5 [Citations: 3]
  4. Semi-conservative high order scheme with numerical entropy indicator for intrusive formulations of hyperbolic systems

    Gerster, Stephan | Semplice, Matteo

    Journal of Computational Physics, Vol. 489 (2023), Iss. P.112254

    https://doi.org/10.1016/j.jcp.2023.112254 [Citations: 0]
  5. Reduced Variance Random Batch Methods for Nonlocal PDEs

    Pareschi, Lorenzo | Zanella, Mattia

    Acta Applicandae Mathematicae, Vol. 191 (2024), Iss. 1

    https://doi.org/10.1007/s10440-024-00656-z [Citations: 0]
  6. Uncertainty damping in kinetic traffic models by driver-assist controls

    Tosin, Andrea | Zanella, Mattia

    Mathematical Control & Related Fields, Vol. 11 (2021), Iss. 3 P.681

    https://doi.org/10.3934/mcrf.2021018 [Citations: 15]
  7. Micro-Macro Stochastic Galerkin Methods for Nonlinear Fokker–Planck Equations with Random Inputs

    Dimarco, Giacomo | Pareschi, Lorenzo | Zanella, Mattia

    Multiscale Modeling & Simulation, Vol. 22 (2024), Iss. 1 P.527

    https://doi.org/10.1137/22M1509205 [Citations: 0]
  8. Economic Segregation Under the Action of Trading Uncertainties

    Ballante, Elena | Bardelli, Chiara | Zanella, Mattia | Figini, Silvia | Toscani, Giuseppe

    Symmetry, Vol. 12 (2020), Iss. 9 P.1390

    https://doi.org/10.3390/sym12091390 [Citations: 5]
  9. A local sensitivity analysis for the hydrodynamic Cucker-Smale model with random inputs

    Ha, Seung-Yeal | Jin, Shi | Jung, Jinwook | Shim, Woojoo

    Journal of Differential Equations, Vol. 268 (2020), Iss. 2 P.636

    https://doi.org/10.1016/j.jde.2019.08.031 [Citations: 2]
  10. Asymptotic-preserving schemes for multiscale physical problems

    Jin, Shi

    Acta Numerica, Vol. 31 (2022), Iss. P.415

    https://doi.org/10.1017/S0962492922000010 [Citations: 30]
  11. Stochastic Galerkin particle methods for kinetic equations of plasmas with uncertainties

    Medaglia, Andrea | Pareschi, Lorenzo | Zanella, Mattia

    Journal of Computational Physics, Vol. 479 (2023), Iss. P.112011

    https://doi.org/10.1016/j.jcp.2023.112011 [Citations: 2]
  12. Uncertainty quantification in hierarchical vehicular flow models

    Herty, Michael | Iacomini, Elisa

    Kinetic and Related Models, Vol. 15 (2022), Iss. 2 P.239

    https://doi.org/10.3934/krm.2022006 [Citations: 5]
  13. Stochastic Galerkin Particle Methods for Kinetic Equations of Plasmas with Uncertainties

    Medaglia, Andrea | Pareschi, Lorenzo | Zanella, Mattia

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4196486 [Citations: 0]
  14. Uniform error estimates for the random batch method to the first‐order consensus models with antisymmetric interaction kernels

    Ko, Dongnam | Ha, Seung‐Yeal | Jin, Shi | Kim, Doheon

    Studies in Applied Mathematics, Vol. 146 (2021), Iss. 4 P.983

    https://doi.org/10.1111/sapm.12372 [Citations: 5]
  15. Particle simulation methods for the Landau-Fokker-Planck equation with uncertain data

    Medaglia, Andrea | Pareschi, Lorenzo | Zanella, Mattia

    Journal of Computational Physics, Vol. 503 (2024), Iss. P.112845

    https://doi.org/10.1016/j.jcp.2024.112845 [Citations: 0]
  16. Boltzmann Games in Heterogeneous Consensus Dynamics

    Albi, Giacomo | Pareschi, Lorenzo | Zanella, Mattia

    Journal of Statistical Physics, Vol. 175 (2019), Iss. 1 P.97

    https://doi.org/10.1007/s10955-019-02246-y [Citations: 11]
  17. Monte Carlo gPC Methods for Diffusive Kinetic Flocking Models with Uncertainties

    Carrillo, José Antonio | Zanella, Mattia

    Vietnam Journal of Mathematics, Vol. 47 (2019), Iss. 4 P.931

    https://doi.org/10.1007/s10013-019-00374-2 [Citations: 17]
  18. Random Batch Methods (RBM) for interacting particle systems

    Jin, Shi | Li, Lei | Liu, Jian-Guo

    Journal of Computational Physics, Vol. 400 (2020), Iss. P.108877

    https://doi.org/10.1016/j.jcp.2019.108877 [Citations: 67]
  19. A local sensitivity analysis in Landau damping for the kinetic Kuramoto equation with random inputs

    Ding, Zhiyan | Ha, Seung-Yeal | Jin, Shi

    Quarterly of Applied Mathematics, Vol. 79 (2020), Iss. 2 P.229

    https://doi.org/10.1090/qam/1578 [Citations: 0]
  20. Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties

    Medaglia, A. | Colelli, G. | Farina, L. | Bacila, A. | Bini, P. | Marchioni, E. | Figini, S. | Pichiecchio, A. | Zanella, M.

    International Journal of Non-Linear Mechanics, Vol. 141 (2022), Iss. P.103933

    https://doi.org/10.1016/j.ijnonlinmec.2022.103933 [Citations: 10]
  21. Interplay of random inputs and adaptive couplings in the Winfree model

    Ha, Seung-Yeal | Kim, Doheon | Moon, Bora

    Communications on Pure & Applied Analysis, Vol. 20 (2021), Iss. 11 P.3959

    https://doi.org/10.3934/cpaa.2021140 [Citations: 1]
  22. Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: Space-homogeneous case

    Pareschi, L. | Zanella, M.

    Journal of Computational Physics, Vol. 423 (2020), Iss. P.109822

    https://doi.org/10.1016/j.jcp.2020.109822 [Citations: 16]
  23. Structure preserving stochastic Galerkin methods for Fokker–Planck equations with background interactions

    Zanella, Mattia

    Mathematics and Computers in Simulation, Vol. 168 (2020), Iss. P.28

    https://doi.org/10.1016/j.matcom.2019.07.012 [Citations: 13]
  24. Kinetic Description of Swarming Dynamics with Topological Interaction and Transient Leaders

    Albi, Giacomo | Ferrarese, Federica

    Multiscale Modeling & Simulation, Vol. 22 (2024), Iss. 3 P.1169

    https://doi.org/10.1137/23M1588615 [Citations: 2]
  25. Trails in Kinetic Theory

    An Introduction to Uncertainty Quantification for Kinetic Equations and Related Problems

    Pareschi, Lorenzo

    2021

    https://doi.org/10.1007/978-3-030-67104-4_5 [Citations: 10]
  26. Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties

    Medaglia, Andrea | Tosin, Andrea | Zanella, Mattia

    Partial Differential Equations and Applications, Vol. 3 (2022), Iss. 4

    https://doi.org/10.1007/s42985-022-00189-w [Citations: 4]
  27. Local Sensitivity Analysis for the Kuramoto--Daido Model with Random Inputs in a Large Coupling Regime

    Ha, Seung-Yeal | Jin, Shi | Jung, Jinwook

    SIAM Journal on Mathematical Analysis, Vol. 52 (2020), Iss. 2 P.2000

    https://doi.org/10.1137/18M1173435 [Citations: 2]
  28. Collective stochastic dynamics of the Cucker-Smale ensemble under uncertain communication

    Ha, Seung-Yeal | Jung, Jinwook | Röckner, Michael

    Journal of Differential Equations, Vol. 284 (2021), Iss. P.39

    https://doi.org/10.1016/j.jde.2021.02.046 [Citations: 4]
  29. Turnpike properties of optimal boundary control problems with random linear hyperbolic systems

    Gugat, Martin | Herty, Michael

    ESAIM: Control, Optimisation and Calculus of Variations, Vol. 29 (2023), Iss. P.55

    https://doi.org/10.1051/cocv/2023051 [Citations: 1]
  30. On the Random Batch Method for Second Order Interacting Particle Systems

    Jin, Shi | Li, Lei | Sun, Yiqun

    Multiscale Modeling & Simulation, Vol. 20 (2022), Iss. 2 P.741

    https://doi.org/10.1137/20M1383069 [Citations: 4]