Finding the Origin of Noise Transients in LIGO Data with Machine Learning

Year:    2019

Communications in Computational Physics, Vol. 25 (2019), Iss. 4 : pp. 963–987

Abstract

Quality improvement of interferometric data collected by gravitational-wave detectors such as Advanced LIGO and Virgo is mission critical for the success of gravitational-wave astrophysics. Gravitational-wave detectors are sensitive to a variety of disturbances of non-astrophysical origin with characteristic frequencies in the instrument band of sensitivity. Removing non-astrophysical artifacts that corrupt the data stream is crucial for increasing the number and statistical significance of gravitational-wave detections and enabling refined astrophysical interpretations of the data. Machine learning has proved to be a powerful tool for analysis of massive quantities of complex data in astronomy and related fields of study. We present two machine learning methods, based on random forest and genetic programming algorithms, that can be used to determine the origin of non-astrophysical transients in the LIGO detectors. We use two classes of transients with known instrumental origin that were identified during the first observing run of Advanced LIGO to show that the algorithms can successfully identify the origin of non-astrophysical transients in real interferometric data and thus assist in the mitigation of instrumental and environmental disturbances in gravitational-wave searches. While the datasets described in this paper are specific to LIGO, and the exact procedures employed were unique to the same, the random forest and genetic programming code bases and means by which they were applied as a dual machine learning approach are completely portable to any number of instruments in which noise is believed to be generated through mechanical couplings, the source of which is not yet discovered.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2018-0092

Communications in Computational Physics, Vol. 25 (2019), Iss. 4 : pp. 963–987

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:    Machine learning gravitational waves noise mitigation.

  1. Dilated convolutional neural network for detecting extreme-mass-ratio inspirals

    Zhao, Tianyu | Zhou, Yue | Shi, Ruijun | Cao, Zhoujian | Ren, Zhixiang

    Physical Review D, Vol. 109 (2024), Iss. 8

    https://doi.org/10.1103/PhysRevD.109.084054 [Citations: 2]
  2. Extraction of binary black hole gravitational wave signals from detector data using deep learning

    Chatterjee, Chayan | Wen, Linqing | Diakogiannis, Foivos | Vinsen, Kevin

    Physical Review D, Vol. 104 (2021), Iss. 6

    https://doi.org/10.1103/PhysRevD.104.064046 [Citations: 22]
  3. iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors

    Essick, Reed | Godwin, Patrick | Hanna, Chad | Blackburn, Lindy | Katsavounidis, Erik

    Machine Learning: Science and Technology, Vol. 2 (2020), Iss. 1 P.015004

    https://doi.org/10.1088/2632-2153/abab5f [Citations: 24]
  4. Identifying noise transients in gravitational-wave data arising from nonlinear couplings

    Hall, Bernard | Suyamprakasam, Sudhagar | Mazumder, Nairwita | More, Anupreeta | Bose, Sukanta

    Classical and Quantum Gravity, Vol. 41 (2024), Iss. 24 P.245016

    https://doi.org/10.1088/1361-6382/ad7cb7 [Citations: 0]
  5. Waves in a forest: a random forest classifier to distinguish between gravitational waves and detector glitches

    Shah, Neev | Knee, Alan M | McIver, Jess | Stenning, David C

    Classical and Quantum Gravity, Vol. 40 (2023), Iss. 23 P.235008

    https://doi.org/10.1088/1361-6382/ad0424 [Citations: 1]
  6. Space-based gravitational wave signal detection and extraction with deep neural network

    Zhao, Tianyu | Lyu, Ruoxi | Wang, He | Cao, Zhoujian | Ren, Zhixiang

    Communications Physics, Vol. 6 (2023), Iss. 1

    https://doi.org/10.1038/s42005-023-01334-6 [Citations: 10]
  7. Exploring Genetic Programming in TensorFlow with TensorGP

    Baeta, Francisco | Correia, João | Martins, Tiago | Machado, Penousal

    SN Computer Science, Vol. 3 (2022), Iss. 2

    https://doi.org/10.1007/s42979-021-01006-8 [Citations: 2]
  8. Handbook of Gravitational Wave Astronomy

    Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources

    Huerta, E. A. | Zhao, Zhizhen

    2021

    https://doi.org/10.1007/978-981-15-4702-7_47-1 [Citations: 3]
  9. New methods to assess and improve LIGO detector duty cycle

    Biswas, A | McIver, J | Mahabal, A

    Classical and Quantum Gravity, Vol. 37 (2020), Iss. 17 P.175008

    https://doi.org/10.1088/1361-6382/ab8650 [Citations: 4]
  10. Extraction of gravitational wave signals with optimized convolutional neural network

    Luo, Hua-Mei | Lin, Wenbin | Chen, Zu-Cheng | Huang, Qing-Guo

    Frontiers of Physics, Vol. 15 (2020), Iss. 1

    https://doi.org/10.1007/s11467-019-0936-x [Citations: 8]
  11. Machine learning the fates of dark matter subhaloes: a fuzzy crystal ball

    Petulante, Abigail | Berlind, Andreas A | Holley-Bockelmann, J Kelly | Sinha, Manodeep

    Monthly Notices of the Royal Astronomical Society, Vol. 504 (2021), Iss. 1 P.248

    https://doi.org/10.1093/mnras/stab867 [Citations: 5]
  12. Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning

    Coughlin, S. | Bahaadini, S. | Rohani, N. | Zevin, M. | Patane, O. | Harandi, M. | Jackson, C. | Noroozi, V. | Allen, S. | Areeda, J. | Coughlin, M. | Ruiz, P. | Berry, C. P. L. | Crowston, K. | Katsaggelos, A. K. | Lundgren, A. | Østerlund, C. | Smith, J. R. | Trouille, L. | Kalogera, V.

    Physical Review D, Vol. 99 (2019), Iss. 8

    https://doi.org/10.1103/PhysRevD.99.082002 [Citations: 36]
  13. Searches for mass-asymmetric compact binary coalescence events using neural networks in the LIGO/Virgo third observation period

    Andrés-Carcasona, M. | Menéndez-Vázquez, A. | Martínez, M. | Mir, Ll. M.

    Physical Review D, Vol. 107 (2023), Iss. 8

    https://doi.org/10.1103/PhysRevD.107.082003 [Citations: 7]
  14. SLICK: Strong Lensing Identification of Candidates Kindred in gravitational wave data

    Magare, Sourabh | More, Anupreeta | Choudhary, Sunil

    Monthly Notices of the Royal Astronomical Society, Vol. 535 (2024), Iss. 1 P.990

    https://doi.org/10.1093/mnras/stae2408 [Citations: 0]
  15. Boosting the efficiency of parametric detection with hierarchical neural networks

    Yan, Jingkai | Colgan, Robert | Wright, John | Márka, Zsuzsa | Bartos, Imre | Márka, Szabolcs

    Physical Review D, Vol. 106 (2022), Iss. 6

    https://doi.org/10.1103/PhysRevD.106.063008 [Citations: 1]
  16. Information for a Better World: Normality, Virtuality, Physicality, Inclusivity

    Design Principles for Background Knowledge to Enhance Learning in Citizen Science

    Crowston, Kevin | Jackson, Corey | Corieri, Isabella | Østerlund, Carsten

    2023

    https://doi.org/10.1007/978-3-031-28032-0_43 [Citations: 1]
  17. Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array

    Chen, MengNi | Zhong, YuanHong | Feng, Yi | Li, Di | Li, Jin

    Science China Physics, Mechanics & Astronomy, Vol. 63 (2020), Iss. 12

    https://doi.org/10.1007/s11433-020-1609-y [Citations: 11]
  18. Fast waveform generation for gravitational waves using evolutionary algorithms

    Meijer, Quirijn | Caudill, Sarah

    Physical Review D, Vol. 110 (2024), Iss. 4

    https://doi.org/10.1103/PhysRevD.110.043035 [Citations: 0]
  19. Detecting and diagnosing terrestrial gravitational-wave mimics through feature learning

    Colgan, Robert E. | Márka, Zsuzsa | Yan, Jingkai | Bartos, Imre | Wright, John N. | Márka, Szabolcs

    Physical Review D, Vol. 107 (2023), Iss. 6

    https://doi.org/10.1103/PhysRevD.107.062006 [Citations: 2]
  20. Machine learning phases of an Abelian gauge theory

    Peng, Jhao-Hong | Tseng, Yuan-Heng | Jiang, Fu-Jiun

    Progress of Theoretical and Experimental Physics, Vol. 2023 (2023), Iss. 7

    https://doi.org/10.1093/ptep/ptad096 [Citations: 4]
  21. Research on the Fastest Detection Method for Weak Trends under Noise Interference

    Li, Guang | Liang, Jing | Yue, Caitong

    Entropy, Vol. 23 (2021), Iss. 8 P.1093

    https://doi.org/10.3390/e23081093 [Citations: 2]
  22. Application of machine learning in ground-based gravitational wave transient noise data processing

    QunYing, XIE | RuiChun, KANG | JiaTong, LI | YiYang, GUO | ShaoDong, ZHAO | XueHao, ZHANG | XiaoBo, ZOU

    SCIENTIA SINICA Physica, Mechanica & Astronomica, Vol. 55 (2025), Iss. 3 P.230408

    https://doi.org/10.1360/SSPMA-2024-0369 [Citations: 0]
  23. Application of a new transient-noise analysis tool for an unmodeled gravitational-wave search pipeline

    Mogushi, Kentaro

    Classical and Quantum Gravity, Vol. 38 (2021), Iss. 15 P.155004

    https://doi.org/10.1088/1361-6382/ac08a7 [Citations: 1]
  24. Enhancing gravitational-wave science with machine learning

    Cuoco, Elena | Powell, Jade | Cavaglià, Marco | Ackley, Kendall | Bejger, Michał | Chatterjee, Chayan | Coughlin, Michael | Coughlin, Scott | Easter, Paul | Essick, Reed | Gabbard, Hunter | Gebhard, Timothy | Ghosh, Shaon | Haegel, Leïla | Iess, Alberto | Keitel, David | Márka, Zsuzsa | Márka, Szabolcs | Morawski, Filip | Nguyen, Tri | Ormiston, Rich | Pürrer, Michael | Razzano, Massimiliano | Staats, Kai | Vajente, Gabriele | Williams, Daniel

    Machine Learning: Science and Technology, Vol. 2 (2020), Iss. 1 P.011002

    https://doi.org/10.1088/2632-2153/abb93a [Citations: 113]
  25. Efficient gravitational-wave glitch identification from environmental data through machine learning

    Colgan, Robert E. | Corley, K. Rainer | Lau, Yenson | Bartos, Imre | Wright, John N. | Márka, Zsuzsa | Márka, Szabolcs

    Physical Review D, Vol. 101 (2020), Iss. 10

    https://doi.org/10.1103/PhysRevD.101.102003 [Citations: 37]
  26. Handbook of Gravitational Wave Astronomy

    Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources

    Huerta, E. A. | Zhao, Zhizhen

    2022

    https://doi.org/10.1007/978-981-16-4306-4_47 [Citations: 0]
  27. Applications of Evolutionary Computation

    TensorGP – Genetic Programming Engine in TensorFlow

    Baeta, Francisco | Correia, João | Martins, Tiago | Machado, Penousal

    2021

    https://doi.org/10.1007/978-3-030-72699-7_48 [Citations: 14]
  28. Gravity Spy: lessons learned and a path forward

    Zevin, Michael | Jackson, Corey B. | Doctor, Zoheyr | Wu, Yunan | Østerlund, Carsten | Johnson, L. Clifton | Berry, Christopher P. L. | Crowston, Kevin | Coughlin, Scott B. | Kalogera, Vicky | Banagiri, Sharan | Davis, Derek | Glanzer, Jane | Hao, Renzhi | Katsaggelos, Aggelos K. | Patane, Oli | Sanchez, Jennifer | Smith, Joshua | Soni, Siddharth | Trouille, Laura | Walker, Marissa | Aerith, Irina | Domainko, Wilfried | Baranowski, Victor-Georges | Niklasch, Gerhard | Téglás, Barbara

    The European Physical Journal Plus, Vol. 139 (2024), Iss. 1

    https://doi.org/10.1140/epjp/s13360-023-04795-4 [Citations: 4]
  29. Berezinskii–Kosterlitz–Thouless transition – A universal neural network study with benchmarks

    Tseng, Y.-H. | Jiang, F.-J.

    Results in Physics, Vol. 33 (2022), Iss. P.105134

    https://doi.org/10.1016/j.rinp.2021.105134 [Citations: 5]
  30. Machine learning phases and criticalities without using real data for training

    Tan, D.-R. | Jiang, F.-J.

    Physical Review B, Vol. 102 (2020), Iss. 22

    https://doi.org/10.1103/PhysRevB.102.224434 [Citations: 9]
  31. A universal neural network for learning phases

    Tan, D.-R. | Peng, J.-H. | Tseng, Y.-H. | Jiang, F.-J.

    The European Physical Journal Plus, Vol. 136 (2021), Iss. 11

    https://doi.org/10.1140/epjp/s13360-021-02121-4 [Citations: 11]
  32. Searches for compact binary coalescence events using neural networks in LIGO/Virgo third observation period

    Menéndez-Vázquez, A | Andrés-Carcasona, M | Martínez, M | Mir, Ll M

    Classical and Quantum Gravity, Vol. 41 (2024), Iss. 13 P.135018

    https://doi.org/10.1088/1361-6382/ad4f42 [Citations: 0]
  33. Multi-detector null-stream-based $\chi^2$ statistic for compact binary coalescence searches

    Dupree, William | Bose, Sukanta

    Classical and Quantum Gravity, Vol. 36 (2019), Iss. 19 P.195012

    https://doi.org/10.1088/1361-6382/ab30cf [Citations: 2]
  34. Exploring gravitational-wave detection and parameter inference using deep learning methods

    Álvares, João D | Font, José A | Freitas, Felipe F | Freitas, Osvaldo G | Morais, António P | Nunes, Solange | Onofre, Antonio | Torres-Forné, Alejandro

    Classical and Quantum Gravity, Vol. 38 (2021), Iss. 15 P.155010

    https://doi.org/10.1088/1361-6382/ac0455 [Citations: 15]
  35. Searches for compact binary coalescence events using neural networks in the LIGO/Virgo second observation period

    Menéndez-Vázquez, A. | Kolstein, M. | Martínez, M. | Mir, Ll. M.

    Physical Review D, Vol. 103 (2021), Iss. 6

    https://doi.org/10.1103/PhysRevD.103.062004 [Citations: 17]
  36. Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach

    Cavaglià, M | Gaudio, S | Hansen, T | Staats, K | Szczepańczyk, M | Zanolin, M

    Machine Learning: Science and Technology, Vol. 1 (2020), Iss. 1 P.015005

    https://doi.org/10.1088/2632-2153/ab527d [Citations: 28]
  37. Site-selection criteria for the Einstein Telescope

    Amann, Florian | Bonsignorio, Fabio | Bulik, Tomasz | Bulten, Henk Jan | Cuccuru, Stefano | Dassargues, Alain | DeSalvo, Riccardo | Fenyvesi, Edit | Fidecaro, Francesco | Fiori, Irene | Giunchi, Carlo | Grado, Aniello | Harms, Jan | Koley, Soumen | Kovács, László | Losurdo, Giovanni | Mandic, Vuk | Meyers, Patrick | Naticchioni, Luca | Nguyen, Frédéric | Oggiano, Giacomo | Olivieri, Marco | Paoletti, Federico | Paoli, Andrea | Plastino, Wolfango | Razzano, Massimiliano | Ruggi, Paolo | Saccorotti, Gilberto | Sintes, Alicia M. | Somlai, László | Ván, Peter | Vasúth, Matyas

    Review of Scientific Instruments, Vol. 91 (2020), Iss. 9

    https://doi.org/10.1063/5.0018414 [Citations: 36]