Year: 2019
Communications in Computational Physics, Vol. 25 (2019), Iss. 4 : pp. 963–987
Abstract
Quality improvement of interferometric data collected by gravitational-wave detectors such as Advanced LIGO and Virgo is mission critical for the success of gravitational-wave astrophysics. Gravitational-wave detectors are sensitive to a variety of disturbances of non-astrophysical origin with characteristic frequencies in the instrument band of sensitivity. Removing non-astrophysical artifacts that corrupt the data stream is crucial for increasing the number and statistical significance of gravitational-wave detections and enabling refined astrophysical interpretations of the data. Machine learning has proved to be a powerful tool for analysis of massive quantities of complex data in astronomy and related fields of study. We present two machine learning methods, based on random forest and genetic programming algorithms, that can be used to determine the origin of non-astrophysical transients in the LIGO detectors. We use two classes of transients with known instrumental origin that were identified during the first observing run of Advanced LIGO to show that the algorithms can successfully identify the origin of non-astrophysical transients in real interferometric data and thus assist in the mitigation of instrumental and environmental disturbances in gravitational-wave searches. While the datasets described in this paper are specific to LIGO, and the exact procedures employed were unique to the same, the random forest and genetic programming code bases and means by which they were applied as a dual machine learning approach are completely portable to any number of instruments in which noise is believed to be generated through mechanical couplings, the source of which is not yet discovered.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.OA-2018-0092
Communications in Computational Physics, Vol. 25 (2019), Iss. 4 : pp. 963–987
Published online: 2019-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
Keywords: Machine learning gravitational waves noise mitigation.
-
Dilated convolutional neural network for detecting extreme-mass-ratio inspirals
Zhao, Tianyu | Zhou, Yue | Shi, Ruijun | Cao, Zhoujian | Ren, ZhixiangPhysical Review D, Vol. 109 (2024), Iss. 8
https://doi.org/10.1103/PhysRevD.109.084054 [Citations: 2] -
Extraction of binary black hole gravitational wave signals from detector data using deep learning
Chatterjee, Chayan | Wen, Linqing | Diakogiannis, Foivos | Vinsen, KevinPhysical Review D, Vol. 104 (2021), Iss. 6
https://doi.org/10.1103/PhysRevD.104.064046 [Citations: 22] -
iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors
Essick, Reed | Godwin, Patrick | Hanna, Chad | Blackburn, Lindy | Katsavounidis, ErikMachine Learning: Science and Technology, Vol. 2 (2020), Iss. 1 P.015004
https://doi.org/10.1088/2632-2153/abab5f [Citations: 24] -
Identifying noise transients in gravitational-wave data arising from nonlinear couplings
Hall, Bernard | Suyamprakasam, Sudhagar | Mazumder, Nairwita | More, Anupreeta | Bose, SukantaClassical and Quantum Gravity, Vol. 41 (2024), Iss. 24 P.245016
https://doi.org/10.1088/1361-6382/ad7cb7 [Citations: 0] -
Waves in a forest: a random forest classifier to distinguish between gravitational waves and detector glitches
Shah, Neev | Knee, Alan M | McIver, Jess | Stenning, David CClassical and Quantum Gravity, Vol. 40 (2023), Iss. 23 P.235008
https://doi.org/10.1088/1361-6382/ad0424 [Citations: 1] -
Space-based gravitational wave signal detection and extraction with deep neural network
Zhao, Tianyu | Lyu, Ruoxi | Wang, He | Cao, Zhoujian | Ren, ZhixiangCommunications Physics, Vol. 6 (2023), Iss. 1
https://doi.org/10.1038/s42005-023-01334-6 [Citations: 10] -
Exploring Genetic Programming in TensorFlow with TensorGP
Baeta, Francisco | Correia, João | Martins, Tiago | Machado, PenousalSN Computer Science, Vol. 3 (2022), Iss. 2
https://doi.org/10.1007/s42979-021-01006-8 [Citations: 2] -
Handbook of Gravitational Wave Astronomy
Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources
Huerta, E. A. | Zhao, Zhizhen2021
https://doi.org/10.1007/978-981-15-4702-7_47-1 [Citations: 3] -
New methods to assess and improve LIGO detector duty cycle
Biswas, A | McIver, J | Mahabal, AClassical and Quantum Gravity, Vol. 37 (2020), Iss. 17 P.175008
https://doi.org/10.1088/1361-6382/ab8650 [Citations: 4] -
Extraction of gravitational wave signals with optimized convolutional neural network
Luo, Hua-Mei | Lin, Wenbin | Chen, Zu-Cheng | Huang, Qing-GuoFrontiers of Physics, Vol. 15 (2020), Iss. 1
https://doi.org/10.1007/s11467-019-0936-x [Citations: 8] -
Machine learning the fates of dark matter subhaloes: a fuzzy crystal ball
Petulante, Abigail | Berlind, Andreas A | Holley-Bockelmann, J Kelly | Sinha, ManodeepMonthly Notices of the Royal Astronomical Society, Vol. 504 (2021), Iss. 1 P.248
https://doi.org/10.1093/mnras/stab867 [Citations: 5] -
Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning
Coughlin, S. | Bahaadini, S. | Rohani, N. | Zevin, M. | Patane, O. | Harandi, M. | Jackson, C. | Noroozi, V. | Allen, S. | Areeda, J. | Coughlin, M. | Ruiz, P. | Berry, C. P. L. | Crowston, K. | Katsaggelos, A. K. | Lundgren, A. | Østerlund, C. | Smith, J. R. | Trouille, L. | Kalogera, V.Physical Review D, Vol. 99 (2019), Iss. 8
https://doi.org/10.1103/PhysRevD.99.082002 [Citations: 36] -
Searches for mass-asymmetric compact binary coalescence events using neural networks in the LIGO/Virgo third observation period
Andrés-Carcasona, M. | Menéndez-Vázquez, A. | Martínez, M. | Mir, Ll. M.Physical Review D, Vol. 107 (2023), Iss. 8
https://doi.org/10.1103/PhysRevD.107.082003 [Citations: 7] -
SLICK: Strong Lensing Identification of Candidates Kindred in gravitational wave data
Magare, Sourabh | More, Anupreeta | Choudhary, SunilMonthly Notices of the Royal Astronomical Society, Vol. 535 (2024), Iss. 1 P.990
https://doi.org/10.1093/mnras/stae2408 [Citations: 0] -
Boosting the efficiency of parametric detection with hierarchical neural networks
Yan, Jingkai | Colgan, Robert | Wright, John | Márka, Zsuzsa | Bartos, Imre | Márka, SzabolcsPhysical Review D, Vol. 106 (2022), Iss. 6
https://doi.org/10.1103/PhysRevD.106.063008 [Citations: 1] -
Information for a Better World: Normality, Virtuality, Physicality, Inclusivity
Design Principles for Background Knowledge to Enhance Learning in Citizen Science
Crowston, Kevin | Jackson, Corey | Corieri, Isabella | Østerlund, Carsten2023
https://doi.org/10.1007/978-3-031-28032-0_43 [Citations: 1] -
Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array
Chen, MengNi | Zhong, YuanHong | Feng, Yi | Li, Di | Li, JinScience China Physics, Mechanics & Astronomy, Vol. 63 (2020), Iss. 12
https://doi.org/10.1007/s11433-020-1609-y [Citations: 11] -
Fast waveform generation for gravitational waves using evolutionary algorithms
Meijer, Quirijn | Caudill, SarahPhysical Review D, Vol. 110 (2024), Iss. 4
https://doi.org/10.1103/PhysRevD.110.043035 [Citations: 0] -
Detecting and diagnosing terrestrial gravitational-wave mimics through feature learning
Colgan, Robert E. | Márka, Zsuzsa | Yan, Jingkai | Bartos, Imre | Wright, John N. | Márka, SzabolcsPhysical Review D, Vol. 107 (2023), Iss. 6
https://doi.org/10.1103/PhysRevD.107.062006 [Citations: 2] -
Machine learning phases of an Abelian gauge theory
Peng, Jhao-Hong | Tseng, Yuan-Heng | Jiang, Fu-JiunProgress of Theoretical and Experimental Physics, Vol. 2023 (2023), Iss. 7
https://doi.org/10.1093/ptep/ptad096 [Citations: 4] -
Research on the Fastest Detection Method for Weak Trends under Noise Interference
Li, Guang | Liang, Jing | Yue, CaitongEntropy, Vol. 23 (2021), Iss. 8 P.1093
https://doi.org/10.3390/e23081093 [Citations: 2] -
Application of machine learning in ground-based gravitational wave transient noise data processing
QunYing, XIE | RuiChun, KANG | JiaTong, LI | YiYang, GUO | ShaoDong, ZHAO | XueHao, ZHANG | XiaoBo, ZOUSCIENTIA SINICA Physica, Mechanica & Astronomica, Vol. 55 (2025), Iss. 3 P.230408
https://doi.org/10.1360/SSPMA-2024-0369 [Citations: 0] -
Application of a new transient-noise analysis tool for an unmodeled gravitational-wave search pipeline
Mogushi, Kentaro
Classical and Quantum Gravity, Vol. 38 (2021), Iss. 15 P.155004
https://doi.org/10.1088/1361-6382/ac08a7 [Citations: 1] -
Enhancing gravitational-wave science with machine learning
Cuoco, Elena | Powell, Jade | Cavaglià, Marco | Ackley, Kendall | Bejger, Michał | Chatterjee, Chayan | Coughlin, Michael | Coughlin, Scott | Easter, Paul | Essick, Reed | Gabbard, Hunter | Gebhard, Timothy | Ghosh, Shaon | Haegel, Leïla | Iess, Alberto | Keitel, David | Márka, Zsuzsa | Márka, Szabolcs | Morawski, Filip | Nguyen, Tri | Ormiston, Rich | Pürrer, Michael | Razzano, Massimiliano | Staats, Kai | Vajente, Gabriele | Williams, DanielMachine Learning: Science and Technology, Vol. 2 (2020), Iss. 1 P.011002
https://doi.org/10.1088/2632-2153/abb93a [Citations: 113] -
Efficient gravitational-wave glitch identification from environmental data through machine learning
Colgan, Robert E. | Corley, K. Rainer | Lau, Yenson | Bartos, Imre | Wright, John N. | Márka, Zsuzsa | Márka, SzabolcsPhysical Review D, Vol. 101 (2020), Iss. 10
https://doi.org/10.1103/PhysRevD.101.102003 [Citations: 37] -
Handbook of Gravitational Wave Astronomy
Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources
Huerta, E. A. | Zhao, Zhizhen2022
https://doi.org/10.1007/978-981-16-4306-4_47 [Citations: 0] -
Applications of Evolutionary Computation
TensorGP – Genetic Programming Engine in TensorFlow
Baeta, Francisco | Correia, João | Martins, Tiago | Machado, Penousal2021
https://doi.org/10.1007/978-3-030-72699-7_48 [Citations: 14] -
Gravity Spy: lessons learned and a path forward
Zevin, Michael | Jackson, Corey B. | Doctor, Zoheyr | Wu, Yunan | Østerlund, Carsten | Johnson, L. Clifton | Berry, Christopher P. L. | Crowston, Kevin | Coughlin, Scott B. | Kalogera, Vicky | Banagiri, Sharan | Davis, Derek | Glanzer, Jane | Hao, Renzhi | Katsaggelos, Aggelos K. | Patane, Oli | Sanchez, Jennifer | Smith, Joshua | Soni, Siddharth | Trouille, Laura | Walker, Marissa | Aerith, Irina | Domainko, Wilfried | Baranowski, Victor-Georges | Niklasch, Gerhard | Téglás, BarbaraThe European Physical Journal Plus, Vol. 139 (2024), Iss. 1
https://doi.org/10.1140/epjp/s13360-023-04795-4 [Citations: 4] -
Berezinskii–Kosterlitz–Thouless transition – A universal neural network study with benchmarks
Tseng, Y.-H. | Jiang, F.-J.Results in Physics, Vol. 33 (2022), Iss. P.105134
https://doi.org/10.1016/j.rinp.2021.105134 [Citations: 5] -
Machine learning phases and criticalities without using real data for training
Tan, D.-R. | Jiang, F.-J.Physical Review B, Vol. 102 (2020), Iss. 22
https://doi.org/10.1103/PhysRevB.102.224434 [Citations: 9] -
A universal neural network for learning phases
Tan, D.-R. | Peng, J.-H. | Tseng, Y.-H. | Jiang, F.-J.The European Physical Journal Plus, Vol. 136 (2021), Iss. 11
https://doi.org/10.1140/epjp/s13360-021-02121-4 [Citations: 11] -
Searches for compact binary coalescence events using neural networks in LIGO/Virgo third observation period
Menéndez-Vázquez, A | Andrés-Carcasona, M | Martínez, M | Mir, Ll MClassical and Quantum Gravity, Vol. 41 (2024), Iss. 13 P.135018
https://doi.org/10.1088/1361-6382/ad4f42 [Citations: 0] -
Multi-detector null-stream-based $\chi^2$ statistic for compact binary coalescence searches
Dupree, William | Bose, SukantaClassical and Quantum Gravity, Vol. 36 (2019), Iss. 19 P.195012
https://doi.org/10.1088/1361-6382/ab30cf [Citations: 2] -
Exploring gravitational-wave detection and parameter inference using deep learning methods
Álvares, João D | Font, José A | Freitas, Felipe F | Freitas, Osvaldo G | Morais, António P | Nunes, Solange | Onofre, Antonio | Torres-Forné, AlejandroClassical and Quantum Gravity, Vol. 38 (2021), Iss. 15 P.155010
https://doi.org/10.1088/1361-6382/ac0455 [Citations: 15] -
Searches for compact binary coalescence events using neural networks in the LIGO/Virgo second observation period
Menéndez-Vázquez, A. | Kolstein, M. | Martínez, M. | Mir, Ll. M.Physical Review D, Vol. 103 (2021), Iss. 6
https://doi.org/10.1103/PhysRevD.103.062004 [Citations: 17] -
Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach
Cavaglià, M | Gaudio, S | Hansen, T | Staats, K | Szczepańczyk, M | Zanolin, MMachine Learning: Science and Technology, Vol. 1 (2020), Iss. 1 P.015005
https://doi.org/10.1088/2632-2153/ab527d [Citations: 28] -
Site-selection criteria for the Einstein Telescope
Amann, Florian | Bonsignorio, Fabio | Bulik, Tomasz | Bulten, Henk Jan | Cuccuru, Stefano | Dassargues, Alain | DeSalvo, Riccardo | Fenyvesi, Edit | Fidecaro, Francesco | Fiori, Irene | Giunchi, Carlo | Grado, Aniello | Harms, Jan | Koley, Soumen | Kovács, László | Losurdo, Giovanni | Mandic, Vuk | Meyers, Patrick | Naticchioni, Luca | Nguyen, Frédéric | Oggiano, Giacomo | Olivieri, Marco | Paoletti, Federico | Paoli, Andrea | Plastino, Wolfango | Razzano, Massimiliano | Ruggi, Paolo | Saccorotti, Gilberto | Sintes, Alicia M. | Somlai, László | Ván, Peter | Vasúth, MatyasReview of Scientific Instruments, Vol. 91 (2020), Iss. 9
https://doi.org/10.1063/5.0018414 [Citations: 36]