An Improved Adaptive Minimum Action Method for the Calculation of Transition Path in Non-Gradient Systems
Year: 2018
Communications in Computational Physics, Vol. 24 (2018), Iss. 1 : pp. 44–68
Abstract
The minimum action method (MAM) is to calculate the most probable transition path in randomly perturbed stochastic dynamics, based on the idea of action minimization in the path space. The accuracy of the numerical path between different metastable states usually suffers from the "clustering problem" near fixed points. The adaptive minimum action method (aMAM) solves this problem by relocating image points equally along arc-length with the help of moving mesh strategy. However, when the time interval is large, the images on the path may still be locally trapped around the transition state in a tangle, due to the singularity of the relationship between arc-length and time at the transition state. Additionally, in most non-gradient dynamics, the tangent direction of the path is not continuous at the transition state so that a geometric corner forms, which brings extra challenges for the aMAM. In this note, we improve the aMAM by proposing a better monitor function that does not contain the numerical approximation of derivatives, and taking use of a generalized scheme of the Euler-Lagrange equation to solve the minimization problem, so that both the path-tangling problem and the non-smoothness in parametrizing the curve do not exist. To further improve the accuracy, we apply the Weighted Essentially non-oscillatory (WENO) method for the interpolation to achieve better performance. Numerical examples are presented to demonstrate the advantages of our new method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.OA-2016-0230
Communications in Computational Physics, Vol. 24 (2018), Iss. 1 : pp. 44–68
Published online: 2018-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
Keywords: Rare event transition path minimum action method moving mesh WENO.
-
An optimal control method to compute the most likely transition path for stochastic dynamical systems with jumps
Wei, Wei | Gao, Ting | Chen, Xiaoli | Duan, JinqiaoChaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 32 (2022), Iss. 5
https://doi.org/10.1063/5.0093924 [Citations: 7] -
Computing the quasipotential for nongradient SDEs in 3D
Yang, Shuo | Potter, Samuel F. | Cameron, Maria K.Journal of Computational Physics, Vol. 379 (2019), Iss. P.325
https://doi.org/10.1016/j.jcp.2018.12.005 [Citations: 13] -
The most likely transition path for a class of distribution-dependent stochastic systems
Wei, Wei | Hu, JianyuStochastics and Dynamics, Vol. 23 (2023), Iss. 08
https://doi.org/10.1142/S0219493723400087 [Citations: 0] -
Importance Sampling for Thermally Induced Switching and Non-Switching Probabilities in Spin-Torque Magnetic Nanodevices
Yu, Yiming | Muratov, Cyrill B. | Moore, Richard O.IEEE Transactions on Magnetics, Vol. 55 (2019), Iss. 9 P.1
https://doi.org/10.1109/TMAG.2019.2914993 [Citations: 2]