Year: 2018
Communications in Computational Physics, Vol. 24 (2018), Iss. 1 : pp. 69–85
Abstract
Many physical problems involve unbounded domains where the physical quantities vanish at infinities. Numerically, this has been handled using different techniques such as domain truncation, approximations using infinitely extended and vanishing basis sets, and mapping bounded basis sets using some coordinate transformations. Each technique has its own advantages and disadvantages. Yet, approximating simultaneously and efficiently a wide range of decaying rates has persisted as major challenge. Also, coordinate transformation, if not carefully implemented, can result in non-orthogonal mapped basis sets. In this work, we revisited this issue with an emphasize on designing appropriate transformations using sine series as basis set. The transformations maintain both the orthogonality and the efficiency. Furthermore, using simple basis set (sine function) help avoid the expensive numerical integrations. In the calculations, four types of physically recurring decaying behaviors are considered, which are: non-oscillating and oscillating exponential decays, and non-oscillating and oscillating algebraic decays. The results and the analyses show that properly designed high-order mapped basis sets can be efficient tools to handle challenging physical problems on unbounded domains. Decay rate ranges as large of 6 orders of magnitudes can be approximated efficiently and concurrently.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.OA-2017-0067
Communications in Computational Physics, Vol. 24 (2018), Iss. 1 : pp. 69–85
Published online: 2018-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 17
Keywords: Mapped basis sets unbounded domain spectral method.
-
Deformation and Smoothing of Cusp Singularities
Mumtaz, F | Alharbi, F HJournal of Physics: Conference Series, Vol. 1391 (2019), Iss. 1 P.012021
https://doi.org/10.1088/1742-6596/1391/1/012021 [Citations: 0] -
Generating efficient basis sets for unbounded domains
Mumtaz, F | Alharbi, F HJournal of Physics: Conference Series, Vol. 1391 (2019), Iss. 1 P.012020
https://doi.org/10.1088/1742-6596/1391/1/012020 [Citations: 0] -
Efficient high order method for differential equations in unbounded domains using generalized coordinate transformation
Mumtaz, Faisal | Saidaoui, Hamed | Alharbi, Fahhad H.Journal of Computational Physics, Vol. 381 (2019), Iss. P.275
https://doi.org/10.1016/j.jcp.2018.12.030 [Citations: 4]