Mathematical Models and Numerical Methods for Spinor Bose-Einstein Condensates.

Mathematical Models and Numerical Methods for Spinor Bose-Einstein Condensates.

Year:    2018

Communications in Computational Physics, Vol. 24 (2018), Iss. 4 : pp. 899–965

Abstract

In this paper, we systematically review mathematical models, theories and numerical methods for ground states and dynamics of spinor Bose-Einstein condensates (BECs) based on the coupled Gross-Pitaevskii equations (GPEs). We start with a pseudo spin-1/2 BEC system with/without an internal atomic Josephson junction and spin-orbit coupling including (i) existence and uniqueness as well as non-existence of ground states under different parameter regimes, (ii) ground state structures under different limiting parameter regimes, (iii) dynamical properties, and (iv) efficient and accurate numerical methods for computing ground states and dynamics. Then we extend these results to spin-1 BEC and spin-2 BEC. Finally, extensions to dipolar spinor systems and/or general spin-F (F≥3) BEC are discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2018.hh80.14

Communications in Computational Physics, Vol. 24 (2018), Iss. 4 : pp. 899–965

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    67

Keywords:    Bose-Einstein condensate Gross-Pitaeskii equation spin-orbit spin-1 spin-2 ground state dynamics numerical methods.

  1. Parallel finite-element codes for the Bogoliubov-de Gennes stability analysis of Bose-Einstein condensates

    Sadaka, Georges | Jolivet, Pierre | Charalampidis, Efstathios G. | Danaila, Ionut

    Computer Physics Communications, Vol. 306 (2025), Iss. P.109378

    https://doi.org/10.1016/j.cpc.2024.109378 [Citations: 0]
  2. Anderson localization and quenched induced dynamics of spin orbit coupled Bose–Einstein condensate in a random potential

    Oztas, Z | Nabiollahi, O

    Physica Scripta, Vol. 99 (2024), Iss. 6 P.065913

    https://doi.org/10.1088/1402-4896/ad405f [Citations: 0]
  3. Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations

    Liu, Lei | Zhou, Xuan-Xuan | Xie, Xi-Yang | Sun, Wen-Rong

    Mathematics and Computers in Simulation, Vol. 228 (2025), Iss. P.466

    https://doi.org/10.1016/j.matcom.2024.09.009 [Citations: 0]
  4. Efficient SAV approach for imaginary time gradient flows with applications to one- and multi-component Bose-Einstein Condensates

    Zhuang, Qingqu | Shen, Jie

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.72

    https://doi.org/10.1016/j.jcp.2019.06.043 [Citations: 32]
  5. Exciton Bose–Einstein Condensation in Transition Metal Dichalcogenide Monolayer under In-Plane Magnetic Fields

    Wang 王, Dengfeng 登峰 | Chen 陈, Yingda 颖达 | Niu 牛, Zhi-Chuan 智川 | Lou 娄, Wen-Kai 文凯 | Chang 常, Kai 凯

    Chinese Physics Letters, Vol. 41 (2024), Iss. 8 P.087101

    https://doi.org/10.1088/0256-307X/41/8/087101 [Citations: 0]
  6. Time-splitting Galerkin method for spin–orbit-coupled Bose–Einstein condensates

    Gao, Yali | Mei, Liquan

    Computers & Mathematics with Applications, Vol. 87 (2021), Iss. P.77

    https://doi.org/10.1016/j.camwa.2021.02.009 [Citations: 1]
  7. i-SPin: an integrator for multicomponent Schrödinger-Poisson systems with self-interactions

    Jain, Mudit | Amin, Mustafa A.

    Journal of Cosmology and Astroparticle Physics, Vol. 2023 (2023), Iss. 04 P.053

    https://doi.org/10.1088/1475-7516/2023/04/053 [Citations: 9]
  8. Normalized Gradient Flow with Lagrange Multiplier for Computing Ground States of Bose--Einstein Condensates

    Liu, Wei | Cai, Yongyong

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 1 P.B219

    https://doi.org/10.1137/20M1328002 [Citations: 14]
  9. Integrator for general spin- s Gross-Pitaevskii systems

    Jain, Mudit | Amin, Mustafa A. | Pu, Han

    Physical Review E, Vol. 108 (2023), Iss. 5

    https://doi.org/10.1103/PhysRevE.108.055305 [Citations: 4]
  10. Collective synchronization of the multi-component Gross–Pitaevskii–Lohe system

    Bao, Weizhu | Ha, Seung-Yeal | Kim, Dohyun | Tang, Qinglin

    Physica D: Nonlinear Phenomena, Vol. 400 (2019), Iss. P.132158

    https://doi.org/10.1016/j.physd.2019.132158 [Citations: 5]
  11. Computing the least action ground state of the nonlinear Schrödinger equation by a normalized gradient flow

    Wang, Chushan

    Journal of Computational Physics, Vol. 471 (2022), Iss. P.111675

    https://doi.org/10.1016/j.jcp.2022.111675 [Citations: 2]
  12. Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates

    Huang, Pengfei | Yang, Qingzhi

    SIAM Journal on Optimization, Vol. 34 (2024), Iss. 3 P.3136

    https://doi.org/10.1137/23M1580346 [Citations: 0]
  13. Ground states of spin-1 BEC with attractive mean-field interaction trapped in harmonic potential in $${\mathbb {R}}^2$$

    Kong, Yuzhen | Wang, Qingxuan | Zhao, Dun

    Calculus of Variations and Partial Differential Equations, Vol. 60 (2021), Iss. 4

    https://doi.org/10.1007/s00526-021-02015-4 [Citations: 2]
  14. Effects of atom numbers on the miscibility-immiscibility transition of a binary Bose-Einstein condensate

    Wen, Lin | Guo, Hui | Wang, Ya-Jun | Hu, Ai-Yuan | Saito, Hiroki | Dai, Chao-Qing | Zhang, Xiao-Fei

    Physical Review A, Vol. 101 (2020), Iss. 3

    https://doi.org/10.1103/PhysRevA.101.033610 [Citations: 24]
  15. Central vortex steady states and dynamics of Bose–Einstein condensates interacting with a microwave field

    Wang, Di | Cai, Yongyong | Wang, Qi

    Physica D: Nonlinear Phenomena, Vol. 419 (2021), Iss. P.132852

    https://doi.org/10.1016/j.physd.2021.132852 [Citations: 0]
  16. Dynamics of bright soliton in a spin–orbit coupled spin-1 Bose–Einstein condensate*

    Guo, Hui | Qiu, Xu | Ma, Yan | Jiang, Hai-Feng | Zhang, Xiao-Fei

    Chinese Physics B, Vol. 30 (2021), Iss. 6 P.060310

    https://doi.org/10.1088/1674-1056/abf34a [Citations: 10]
  17. Spatial order in a two-dimensional spin–orbit-coupled spin-1/2 condensate: superlattice, multi-ring and stripe formation

    Adhikari, S K

    Journal of Physics: Condensed Matter, Vol. 33 (2021), Iss. 42 P.425402

    https://doi.org/10.1088/1361-648X/ac16ab [Citations: 3]
  18. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers*

    Chen, Yingda | Zhang, Dong | Chang, Kai

    Chinese Physics Letters, Vol. 37 (2020), Iss. 11 P.117102

    https://doi.org/10.1088/0256-307X/37/11/117102 [Citations: 4]
  19. Motions of bright soliton in spin-tensor-momentum coupled spin-1 Bose–Einstein condensates

    Peng, Xiao-Li | Qiu, Xu | Liang, Yi | Hu, Ai-Yuan | Wen, Lin

    Optik, Vol. 267 (2022), Iss. P.169688

    https://doi.org/10.1016/j.ijleo.2022.169688 [Citations: 2]
  20. Realization of the Hadamard gate based on superposition of the composite solitons

    Uthayakumar, T. | Al Khawaja, U.

    Physics Letters A, Vol. 452 (2022), Iss. P.128451

    https://doi.org/10.1016/j.physleta.2022.128451 [Citations: 2]
  21. Ground-state patterns and phase diagram of spin-1 Bose–Einstein condensates in uniform magnetic field

    Chern, I-Liang | Chou, Chiu-Fen | Shieh, Tien-Tsan

    Physica D: Nonlinear Phenomena, Vol. 388 (2019), Iss. P.73

    https://doi.org/10.1016/j.physd.2018.09.005 [Citations: 3]
  22. Applied Mathematical Analysis and Computations II

    Existence and Non-existence of Ground State Solutions for Magnetic NLS

    Asipchuk, Oleg | Leonard, Christopher | Zheng, Shijun

    2024

    https://doi.org/10.1007/978-3-031-69710-4_14 [Citations: 0]
  23. Efficient and accurate gradient flow methods for computing ground states of spinor Bose-Einstein condensates

    Cai, Yongyong | Liu, Wei

    Journal of Computational Physics, Vol. 433 (2021), Iss. P.110183

    https://doi.org/10.1016/j.jcp.2021.110183 [Citations: 3]
  24. Dynamics of spin-nematic bright solitary waves in spin-tensor-momentum coupled Bose-Einstein condensates

    Qiu, Xu | Hu, Ai-Yuan | Cai, Yongyong | Saito, Hiroki | Zhang, Xiao-Fei | Wen, Lin

    Physical Review A, Vol. 107 (2023), Iss. 3

    https://doi.org/10.1103/PhysRevA.107.033308 [Citations: 5]
  25. Comparison of Splitting Methods for Deterministic/Stochastic Gross–Pitaevskii Equation

    Geiser, Jürgen | Nasari, Amirbahador

    Mathematical and Computational Applications, Vol. 24 (2019), Iss. 3 P.76

    https://doi.org/10.3390/mca24030076 [Citations: 2]