Journals
Resources
About Us
Open Access

A Preconditioned Conjugated Gradient Method for Computing Ground States of Rotating Dipolar Bose-Einstein Condensates via Kernel Truncation Method for Dipole-Dipole Interaction Evaluation

A Preconditioned Conjugated Gradient Method for Computing Ground States of Rotating Dipolar Bose-Einstein Condensates via Kernel Truncation Method for Dipole-Dipole Interaction Evaluation

Year:    2018

Communications in Computational Physics, Vol. 24 (2018), Iss. 4 : pp. 966–988

Abstract

In this paper, we propose an efficient and accurate method to compute the ground state of 2D/3D rotating dipolar BEC by incorporating the Kernel Truncation Method (KTM) for Dipole-Dipole Interaction (DDI) evaluation into the newly-developed Preconditioned Conjugate Gradient (PCG) method [9]. Adaptation details of KTM and PCG, including multidimensional discrete convolution acceleration for KTM, choice of the preconditioners in PCG, are provided. The performance of our method is confirmed with extensive numerical tests, with emphasis on spectral accuracy of KTM and efficiency of ground state computation with PCG. Application of our method shows some interesting vortex lattice patterns in 2D and 3D respectively.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2018.hh80.11

Communications in Computational Physics, Vol. 24 (2018), Iss. 4 : pp. 966–988

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    23

Keywords:    Rotating dipolar BEC Dipole-Dipole Interaction Preconditioned Conjugate Gradient method Kernel Truncation Method ground state.

  1. Decoupled sound and amplitude modes in trapped dipolar supersolids

    Hertkorn, J. | Stürmer, P. | Mukherjee, K. | Ng, K. S. H. | Uerlings, P. | Hellstern, F. | Lavoine, L. | Reimann, S. M. | Pfau, T. | Klemt, R.

    Physical Review Research, Vol. 6 (2024), Iss. 4

    https://doi.org/10.1103/PhysRevResearch.6.L042056 [Citations: 0]
  2. Second-Order Flows for Computing the Ground States of Rotating Bose-Einstein Condensates

    Chen, Haifan | Dong, Guozhi | Liu, Wei | Xie, Ziqing

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4109828 [Citations: 0]
  3. BEC2HPC: A HPC spectral solver for nonlinear Schrödinger and rotating Gross-Pitaevskii equations. Stationary states computation

    Gaidamour, Jérémie | Tang, Qinglin | Antoine, Xavier

    Computer Physics Communications, Vol. 265 (2021), Iss. P.108007

    https://doi.org/10.1016/j.cpc.2021.108007 [Citations: 7]
  4. Numerical calculation of dipolar-quantum-droplet stationary states

    Lee, Au-Chen | Baillie, D. | Blakie, P. B.

    Physical Review Research, Vol. 3 (2021), Iss. 1

    https://doi.org/10.1103/PhysRevResearch.3.013283 [Citations: 22]
  5. Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates

    Cai, Yongyong | Yuan, Yongjun | Rosenkranz, Matthias | Pu, Han | Bao, Weizhu

    Physical Review A, Vol. 98 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevA.98.023610 [Citations: 17]
  6. Efficient Continuation Methods for Computing Ground States of Quasi-2D Rotating Dipolar Bose-Einstein Condensates

    Jeng, B.-W. | Su, P.-H. | Char, M.-I. | Specogna, Ruben

    Advances in Mathematical Physics, Vol. 2022 (2022), Iss. P.1

    https://doi.org/10.1155/2022/9485124 [Citations: 0]
  7. A New Preconditioned Nonlinear Conjugate Gradient Method in Real Arithmetic for Computing the Ground States of Rotational Bose–Einstein Condensate

    Zhang, Tianqi | Xue, Fei

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 3 P.A1764

    https://doi.org/10.1137/23M1590317 [Citations: 0]
  8. Supersolidity in Two-Dimensional Trapped Dipolar Droplet Arrays

    Hertkorn, J. | Schmidt, J.-N. | Guo, M. | Böttcher, F. | Ng, K. S. H. | Graham, S. D. | Uerlings, P. | Büchler, H. P. | Langen, T. | Zwierlein, M. | Pfau, T.

    Physical Review Letters, Vol. 127 (2021), Iss. 15

    https://doi.org/10.1103/PhysRevLett.127.155301 [Citations: 38]
  9. An Efficient Adaptive Mesh Redistribution Method for Nonlinear Eigenvalue Problems in Bose–Einstein Condensates

    Xie, Hehu | Xie, Manting | Yin, Xiaobo | Zhao, Gang

    Journal of Scientific Computing, Vol. 94 (2023), Iss. 2

    https://doi.org/10.1007/s10915-022-02093-2 [Citations: 1]
  10. Second-order Sobolev gradient flows for computing ground state of ultracold Fermi gases

    Zhang, Xuelin | Wang, Hanquan

    Journal of Computational and Applied Mathematics, Vol. 451 (2024), Iss. P.116096

    https://doi.org/10.1016/j.cam.2024.116096 [Citations: 0]
  11. A preconditioned Riemannian conjugate gradient method for computing the ground states of arbitrary-angle rotating Bose-Einstein condensates

    Shu, Qingzhou | Tang, Qinglin | Zhang, Shaobo | Zhang, Yong

    Journal of Computational Physics, Vol. 512 (2024), Iss. P.113130

    https://doi.org/10.1016/j.jcp.2024.113130 [Citations: 0]
  12. Pattern formation in quantum ferrofluids: From supersolids to superglasses

    Hertkorn, J. | Schmidt, J.-N. | Guo, M. | Böttcher, F. | Ng, K. S. H. | Graham, S. D. | Uerlings, P. | Langen, T. | Zwierlein, M. | Pfau, T.

    Physical Review Research, Vol. 3 (2021), Iss. 3

    https://doi.org/10.1103/PhysRevResearch.3.033125 [Citations: 70]
  13. Second-order flows for computing the ground states of rotating Bose-Einstein condensates

    Chen, Haifan | Dong, Guozhi | Liu, Wei | Xie, Ziqing

    Journal of Computational Physics, Vol. 475 (2023), Iss. P.111872

    https://doi.org/10.1016/j.jcp.2022.111872 [Citations: 6]
  14. How to realize a homogeneous dipolar Bose gas in the roton regime

    Juhász, Péter | Krstajić, Milan | Strachan, David | Gandar, Edward | Smith, Robert P.

    Physical Review A, Vol. 105 (2022), Iss. 6

    https://doi.org/10.1103/PhysRevA.105.L061301 [Citations: 4]
  15. Computing the least action ground state of the nonlinear Schrödinger equation by a normalized gradient flow

    Wang, Chushan

    Journal of Computational Physics, Vol. 471 (2022), Iss. P.111675

    https://doi.org/10.1016/j.jcp.2022.111675 [Citations: 2]
  16. A Spectrally Accurate Numerical Method for Computing the Bogoliubov--de Gennes Excitations of Dipolar Bose--Einstein Condensates

    Tang, Qinglin | Xie, Manting | Zhang, Yong | Zhang, Yuqing

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 1 P.B100

    https://doi.org/10.1137/21M1401048 [Citations: 2]
  17. On Optimal Zero-Padding of Kernel Truncation Method

    Liu, Xin | Tang, Qinglin | Zhang, Shaobo | Zhang, Yong

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 1 P.A23

    https://doi.org/10.1137/23M1550803 [Citations: 0]
  18. Adaptation and assessement of projected Nesterov accelerated gradient flow to compute stationary states of nonlinear Schrödinger equations

    Antoine, Xavier | Bentayaa, Chorouq | Gaidamour, Jérémie

    International Journal of Computer Mathematics, Vol. 101 (2024), Iss. 1 P.21

    https://doi.org/10.1080/00207160.2023.2294688 [Citations: 0]
  19. A time splitting Chebyshev-Fourier spectral method for the time-dependent rotating nonlocal Schrödinger equation in polar coordinates

    Wang, Hanquan | Wang, Jing | Zhang, Shaobo | Zhang, Yong

    Journal of Computational Physics, Vol. 498 (2024), Iss. P.112680

    https://doi.org/10.1016/j.jcp.2023.112680 [Citations: 1]
  20. Vortex chains in rotating two-dimensional Bose-Einstein condensate in a harmonic plus optical lattices potential

    Zhang, Zhi-Qiang

    Acta Physica Sinica, Vol. 71 (2022), Iss. 22 P.220304

    https://doi.org/10.7498/aps.71.20221312 [Citations: 0]
  21. Newton-Based Methods for Finding the Positive Ground State of Gross-Pitaevskii Equations

    Huang, Pengfei | Yang, Qingzhi

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 1

    https://doi.org/10.1007/s10915-021-01711-9 [Citations: 4]