Year: 2018
Communications in Computational Physics, Vol. 24 (2018), Iss. 4 : pp. 1143–1168
Abstract
This work is concerned with spectral collocation methods for fractional PDEs in unbounded domains. The method consists of expanding the solution with proper global basis functions and imposing collocation conditions on the Gauss-Hermite points. In this work, two Hermite-type functions are employed to serve as basis functions. Our main task is to find corresponding differentiation matrices which are computed recursively. Two important issues relevant to condition numbers and scaling factors will be discussed. Applications of the spectral collocation methods to multi-term fractional PDEs are also presented. Several numerical examples are carried out to demonstrate the effectiveness of the proposed methods.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.2018.hh80.12
Communications in Computational Physics, Vol. 24 (2018), Iss. 4 : pp. 1143–1168
Published online: 2018-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
Keywords: Fractional PDEs Hermite polynomials/functions unbounded domain spectral collocation methods.