Monotone Finite Volume Scheme for Three Dimensional Diffusion Equation on Tetrahedral Meshes

Monotone Finite Volume Scheme for Three Dimensional Diffusion Equation on Tetrahedral Meshes

Year:    2017

Communications in Computational Physics, Vol. 21 (2017), Iss. 1 : pp. 162–181

Abstract

We construct a nonlinear monotone finite volume scheme for three-dimensional diffusion equation on tetrahedral meshes. Since it is crucial important to eliminate the vertex unknowns in the construction of the scheme, we present a new efficient eliminating method. The scheme has only cell-centered unknowns and can deal with discontinuous or tensor diffusion coefficient problems on distorted meshes rigorously. The numerical results illustrate that the resulting scheme can preserve positivity on distorted tetrahedral meshes, and also show that our scheme appears to be approximate second-order accuracy for solution.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.220415.090516a

Communications in Computational Physics, Vol. 21 (2017), Iss. 1 : pp. 162–181

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:   

  1. The positivity‐preserving finite volume scheme with fixed stencils for anisotropic diffusion problems on general polyhedral meshes

    Yang, Di | Gao, Zhiming | Ni, Guoxi

    International Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 8 P.1233

    https://doi.org/10.1002/fld.5088 [Citations: 1]
  2. A new finite volume scheme with gradient transfer method for solving diffusion problems on the distorted hexahedral meshes

    Pan, Kejia | Li, Jin | Wu, Xiaoxin | Yuan, Guangwei | Yue, Xiaoqiang

    Computational Geosciences, Vol. 26 (2022), Iss. 2 P.279

    https://doi.org/10.1007/s10596-021-10124-4 [Citations: 0]
  3. The cell-centered positivity-preserving finite volume scheme for 3D anisotropic diffusion problems on distorted meshes

    Peng, Gang | Gao, Zhiming | Yan, Wenjing | Feng, Xinlong

    Computer Physics Communications, Vol. 269 (2021), Iss. P.108099

    https://doi.org/10.1016/j.cpc.2021.108099 [Citations: 2]
  4. The positivity‐preserving finite volume scheme with fixed stencils for anisotropic diffusion problems on general polyhedral meshes

    Yang, Di | Gao, Zhiming | Ni, Guoxi

    International Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 12 P.2137

    https://doi.org/10.1002/fld.5126 [Citations: 0]
  5. A vertex‐centered and positivity‐preserving scheme for anisotropic diffusion equations on general polyhedral meshes

    Su, Shuai | Dong, Qiannan | Wu, Jiming

    Mathematical Methods in the Applied Sciences, Vol. 42 (2019), Iss. 1 P.59

    https://doi.org/10.1002/mma.5324 [Citations: 8]
  6. A Positivity-Preserving Finite Volume Scheme with Least Square Interpolation for 3D Anisotropic Diffusion Equation

    Xie, Hui | Xu, Xuejun | Zhai, Chuanlei | Yong, Heng

    Journal of Scientific Computing, Vol. 89 (2021), Iss. 3

    https://doi.org/10.1007/s10915-021-01629-2 [Citations: 2]
  7. A novel cell-centered finite volume scheme with positivity-preserving property for the anisotropic diffusion problems on general polyhedral meshes

    Peng, Gang | Gao, Zhiming | Feng, Xinlong

    Applied Mathematics Letters, Vol. 104 (2020), Iss. P.106252

    https://doi.org/10.1016/j.aml.2020.106252 [Citations: 4]
  8. A monotone diffusion scheme for 3D general meshes: Application to radiation hydrodynamics in the equilibrium diffusion limit

    Anguill, Pierre | Blanc, Xavier | Labourasse, Emmanuel

    Computers & Mathematics with Applications, Vol. 158 (2024), Iss. P.56

    https://doi.org/10.1016/j.camwa.2024.01.005 [Citations: 0]
  9. A positivity-preserving pyramid scheme for anisotropic diffusion problems on general hexahedral meshes with nonplanar cell faces

    Wang, Shuai | Hang, Xudeng | Yuan, Guangwei

    Journal of Computational Physics, Vol. 371 (2018), Iss. P.152

    https://doi.org/10.1016/j.jcp.2018.05.026 [Citations: 10]
  10. A VEM-Based Positivity-Preserving Conservative Scheme For  Anisotropic  Diffusion Problems on Generalized Polyhedral Meshes

    Yang, Di | Gao, Zhi-Ming | Sheng, Meihua | Ni, Guoxi

    SSRN Electronic Journal , Vol. (2021), Iss.

    https://doi.org/10.2139/ssrn.3955795 [Citations: 0]
  11. A linearity-preserving finite volume scheme with a diamond stencil for the simulation of anisotropic and highly heterogeneous diffusion problems using tetrahedral meshes

    de Lira Filho, Ricardo J.M. | dos Santos, Sidicley R. | Cavalcante, Túlio de M. | Contreras, Fernando R.L. | Lyra, Paulo R.M. | de Carvalho, Darlan K.E.

    Computers & Structures, Vol. 250 (2021), Iss. P.106510

    https://doi.org/10.1016/j.compstruc.2021.106510 [Citations: 11]
  12. The VEM-based positivity-preserving conservative scheme for radiation diffusion problems on generalized polyhedral meshes

    Yang, Di | Sheng, Meihua | Gao, Zhiming | Ni, Guoxi

    Computers & Fluids, Vol. 239 (2022), Iss. P.105356

    https://doi.org/10.1016/j.compfluid.2022.105356 [Citations: 2]
  13. Moving mesh finite difference solution of non-equilibrium radiation diffusion equations

    Yang, Xiaobo | Huang, Weizhang | Qiu, Jianxian

    Numerical Algorithms, Vol. 82 (2019), Iss. 4 P.1409

    https://doi.org/10.1007/s11075-019-00662-5 [Citations: 1]
  14. A strong positivity‐preserving finite volume scheme for convection–diffusion equations on tetrahedral meshes

    Zhao, Fei | Sheng, Zhiqiang | Yuan, Guangwei

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103 (2023), Iss. 5

    https://doi.org/10.1002/zamm.202200032 [Citations: 0]
  15. High order conservative LDG-IMEX methods for the degenerate nonlinear non-equilibrium radiation diffusion problems

    Zheng, Shaoqin | Tang, Min | Zhang, Qiang | Xiong, Tao

    Journal of Computational Physics, Vol. 503 (2024), Iss. P.112838

    https://doi.org/10.1016/j.jcp.2024.112838 [Citations: 0]