Hamiltonian Analysis and Dual Vector Spectral Elements for 2D Maxwell Eigenproblems

Hamiltonian Analysis and Dual Vector Spectral Elements for 2D Maxwell Eigenproblems

Year:    2017

Communications in Computational Physics, Vol. 21 (2017), Iss. 2 : pp. 515–525

Abstract

The 2D Maxwell eigenproblems are studied from a new point of view. An electromagnetic problem is cast from the Lagrangian system with single variable into the Hamiltonian system with dual variables. The electric and magnetic components transverse to the wave propagation direction are treated as dual variables to each other. Higher order curl-conforming and divergence-conforming vector basis functions are used to construct dual vector spectral elements. Numerical examples demonstrate some unique advantages of the proposed method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2016-0010

Communications in Computational Physics, Vol. 21 (2017), Iss. 2 : pp. 515–525

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords: