Schemes with Well-Controlled Dissipation. Hyperbolic Systems in Nonconservative Form

Schemes with Well-Controlled Dissipation. Hyperbolic Systems in Nonconservative Form

Year:    2017

Author:    Abdelaziz Beljadid, Philippe G. LeFloch, Siddhartha Mishra, Carlos Parés

Communications in Computational Physics, Vol. 21 (2017), Iss. 4 : pp. 913–946

Abstract

We propose here a class of numerical schemes for the approximation of weak solutions to nonlinear hyperbolic systems in nonconservative form – the notion of solution being understood in the sense of Dal Maso, LeFloch, and Murat (DLM). The proposed numerical method falls within LeFloch-Mishra's framework of schemes with well-controlled dissipation (WCD), recently introduced for dealing with small-scale dependent shocks. We design WCD schemes which are consistent with a given nonconservative system at arbitrarily high-order and then analyze their linear stability. We then investigate several nonconservative hyperbolic models arising in complex fluid dynamics, and we numerically demonstrate the convergence of our schemes toward physically meaningful weak solutions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2016-0019

Communications in Computational Physics, Vol. 21 (2017), Iss. 4 : pp. 913–946

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    34

Keywords:   

Author Details

Abdelaziz Beljadid

Philippe G. LeFloch

Siddhartha Mishra

Carlos Parés

  1. Approximate Taylor methods for ODEs

    Baeza, A. | Boscarino, S. | Mulet, P. | Russo, G. | Zorío, D.

    Computers & Fluids, Vol. 159 (2017), Iss. P.156

    https://doi.org/10.1016/j.compfluid.2017.10.001 [Citations: 10]
  2. Numerical path preserving Godunov schemes for hyperbolic systems

    Xu, Ke | Gao, Zhenxun | Qian, Zhansen | Jiang, Chongwen | Lee, Chun-Hian

    Journal of Computational Physics, Vol. 490 (2023), Iss. P.112297

    https://doi.org/10.1016/j.jcp.2023.112297 [Citations: 1]
  3. A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks

    Bezgin, Deniz A. | Schmidt, Steffen J. | Adams, Nikolaus A.

    Journal of Computational Physics, Vol. 437 (2021), Iss. P.110324

    https://doi.org/10.1016/j.jcp.2021.110324 [Citations: 16]
  4. A simple method of depressing numerical dissipation effects during wave simulation within the Euler model

    Hu, Zhe | Zhang, Xiaoying | Cui, Weicheng | Wang, Fang | Li, Xiaowen | Li, Yan

    Acta Oceanologica Sinica, Vol. 39 (2020), Iss. 1 P.141

    https://doi.org/10.1007/s13131-019-1524-1 [Citations: 0]
  5. A Difference Scheme with Well-Controlled Dissipation for Solving the Kapila Model Equations

    Polekhina, R. R. | Savenkov, E. B.

    Differential Equations, Vol. 60 (2024), Iss. 7 P.925

    https://doi.org/10.1134/S0012266124070085 [Citations: 0]
  6. Reprint of: Approximate Taylor methods for ODEs

    Baeza, A. | Boscarino, S. | Mulet, P. | Russo, G. | Zorío, D.

    Computers & Fluids, Vol. 169 (2018), Iss. P.87

    https://doi.org/10.1016/j.compfluid.2018.03.058 [Citations: 6]
  7. Entropy-stable space–time DG schemes for non-conservative hyperbolic systems

    Hiltebrand, Andreas | Mishra, Siddhartha | Parés, Carlos

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 3 P.995

    https://doi.org/10.1051/m2an/2017056 [Citations: 9]
  8. Artificial Viscosity to Get Both Robustness and Discrete Entropy Inequalities

    Berthon, Christophe | Castro Díaz, Manuel J. | Duran, Arnaud | Morales de Luna, Tomás | Saleh, Khaled

    Journal of Scientific Computing, Vol. 97 (2023), Iss. 3

    https://doi.org/10.1007/s10915-023-02385-1 [Citations: 0]
  9. In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems - Second-order extension

    Pimentel-García, Ernesto | Castro, Manuel J. | Chalons, Christophe | Morales de Luna, Tomás | Parés, Carlos

    Journal of Computational Physics, Vol. 459 (2022), Iss. P.111152

    https://doi.org/10.1016/j.jcp.2022.111152 [Citations: 14]
  10. A splitting scheme for the coupled Saint-Venant-Exner model

    Siviglia, A. | Vanzo, D. | Toro, E.F.

    Advances in Water Resources, Vol. 159 (2022), Iss. P.104062

    https://doi.org/10.1016/j.advwatres.2021.104062 [Citations: 9]
  11. Distributions as travelling waves in a nonlinear model from elastodynamics

    Sarrico, C.O.R.

    Physica D: Nonlinear Phenomena, Vol. 403 (2020), Iss. P.132328

    https://doi.org/10.1016/j.physd.2020.132328 [Citations: 5]
  12. Discontinuous Galerkin schemes for hyperbolic systems in non-conservative variables: Quasi-conservative formulation with subcell finite volume corrections

    Gaburro, Elena | Boscheri, Walter | Chiocchetti, Simone | Ricchiuto, Mario

    Computer Methods in Applied Mechanics and Engineering, Vol. 431 (2024), Iss. P.117311

    https://doi.org/10.1016/j.cma.2024.117311 [Citations: 0]
  13. DIFFERENCE SCHEME WITH WELL CONTROLLED DISSIPATION FOR SOLUTION OF KAPILA MODEL

    Polekhina, R. R. | Savenkov, E. B.

    Дифференциальные уравнения, Vol. 60 (2024), Iss. 7

    https://doi.org/10.31857/S0374064124070072 [Citations: 0]
  14. A conservative and consistent scalar filtered mass density function method for supersonic flows

    Zhang, Lin | Liang, Jianhan | Sun, Mingbo | Yang, Yue | Zhang, Hailong | Cai, Xiaodong

    Physics of Fluids, Vol. 33 (2021), Iss. 2

    https://doi.org/10.1063/5.0036022 [Citations: 6]