Nonconforming Finite Element Method Applied to the Driven Cavity Problem

Nonconforming Finite Element Method Applied to the Driven Cavity Problem

Year:    2017

Communications in Computational Physics, Vol. 21 (2017), Iss. 4 : pp. 1012–1038

Abstract

A cheapest stable nonconforming finite element method is presented for solving the incompressible flow in a square cavity without smoothing the corner singularities. The stable cheapest nonconforming finite element pair based on P1×P0 on rectangular meshes [29] is employed with a minimal modification of the discontinuous Dirichlet data on the top boundary, where $\widetilde{\mathcal{P}^h_0}$ is the finite element space of piecewise constant pressures with the globally one-dimensional checker-board pattern subspace eliminated. The proposed Stokes elements have the least number of degrees of freedom compared to those of known stable Stokes elements. Three accuracy indications for our elements are analyzed and numerically verified. Also, various numerous computational results obtained by using our proposed element show excellent accuracy.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2016-0039

Communications in Computational Physics, Vol. 21 (2017), Iss. 4 : pp. 1012–1038

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    27

Keywords:   

  1. On the efficiency of combining different methods for acceleration of iterations at the solution of PDEs by the method of collocations and least residuals

    Vorozhtsov, Evgenii V. | Shapeev, Vasily P.

    Applied Mathematics and Computation, Vol. 363 (2019), Iss. P.124644

    https://doi.org/10.1016/j.amc.2019.124644 [Citations: 5]
  2. Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

    Upwind Hybrid Spectral Difference Methods for Steady-State Navier–Stokes Equations

    Jeon, Youngmok | Sheen, Dongwoo

    2018

    https://doi.org/10.1007/978-3-319-72456-0_28 [Citations: 2]
  3. Бездивергентный метод коллокаций и наименьших квадратов для расчета течений несжимаемой жидкости и его эффективная реализация

    Ворожцов, Евгений Васильевич | Vorozhtsov, Evgenii Vasil'evich | Шапеев, Василий Павлович | Shapeev, Vasiliy Pavlovich

    Вестник Самарского государственного технического университета. Серия «Физико-математические науки», Vol. 24 (2020), Iss. 3 P.542

    https://doi.org/10.14498/vsgtu1758 [Citations: 1]
  4. P1$$ {P}_1 $$–Nonconforming quadrilateral finite element space with periodic boundary conditions: Part I. Fundamental results on dimensions, bases, solvers, and error analysis

    Yim, Jaeryun | Sheen, Dongwoo

    Numerical Methods for Partial Differential Equations, Vol. 39 (2023), Iss. 5 P.3725

    https://doi.org/10.1002/num.23023 [Citations: 1]