An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes

An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes

Year:    2016

Communications in Computational Physics, Vol. 20 (2016), Iss. 1 : pp. 188–233

Abstract

We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M, i.e. such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1. The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and efficient semi-implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.260614.061115a

Communications in Computational Physics, Vol. 20 (2016), Iss. 1 : pp. 188–233

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    46

Keywords:   

  1. Idealised 3D simulations of diabatically forced Ledoux convection

    Daley-Yates, Simon | Padioleau, Thomas | Tremblin, Pascal | Kestener, Pierre | Mancip, Martial

    Astronomy & Astrophysics, Vol. 653 (2021), Iss. P.A54

    https://doi.org/10.1051/0004-6361/202040120 [Citations: 2]
  2. An Antidiffusive HLL Scheme for the Electronic $M_1$ Model in the Diffusion Limit

    Chalons, C. | Guisset, S.

    Multiscale Modeling & Simulation, Vol. 16 (2018), Iss. 2 P.991

    https://doi.org/10.1137/18M1126692 [Citations: 4]
  3. On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow water equations

    Del Grosso, A. | Castro Díaz, M. | Chalons, C. | Morales de Luna, T.

    Applied Mathematics and Computation, Vol. 442 (2023), Iss. P.127702

    https://doi.org/10.1016/j.amc.2022.127702 [Citations: 2]
  4. An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations

    Boscheri, Walter | Dimarco, Giacomo | Tavelli, Maurizio

    Computer Methods in Applied Mechanics and Engineering, Vol. 374 (2021), Iss. P.113602

    https://doi.org/10.1016/j.cma.2020.113602 [Citations: 27]
  5. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

    A Weighted Splitting Approach for Low-Mach Number Flows

    Iampietro, David | Daude, Frédéric | Galon, Pascal | Hérard, Jean-Marc

    2017

    https://doi.org/10.1007/978-3-319-57394-6_1 [Citations: 1]
  6. Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems

    Study of a Numerical Scheme with Transport-Acoustic Operator Splitting on a Staggered Mesh

    Halabi, Ahmad El | Fernier, Pierre | Galie, Thomas | Kokh, Samuel | Saleh, Khaled

    2023

    https://doi.org/10.1007/978-3-031-40860-1_13 [Citations: 0]
  7. Second-order well-balanced Lagrange-projection schemes for blood flow equations

    Del Grosso, A. | Chalons, C.

    Calcolo, Vol. 58 (2021), Iss. 4

    https://doi.org/10.1007/s10092-021-00434-5 [Citations: 4]
  8. A Fully Well-Balanced Lagrange--Projection-Type Scheme for the Shallow-Water Equations

    Castro Díaz, Manuel J. | Chalons, Christophe | de Luna, Tomás Morales

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 5 P.3071

    https://doi.org/10.1137/17M1156101 [Citations: 13]
  9. A High-performance and Portable All-Mach Regime Flow Solver Code with Well-balanced Gravity. Application to Compressible Convection

    Padioleau, Thomas | Tremblin, Pascal | Audit, Edouard | Kestener, Pierre | Kokh, Samuel

    The Astrophysical Journal, Vol. 875 (2019), Iss. 2 P.128

    https://doi.org/10.3847/1538-4357/ab0f2c [Citations: 12]
  10. An Asymptotic-Preserving All-Speed Scheme for Fluid Dynamics and Nonlinear Elasticity

    Abbate, Emanuela | Iollo, Angelo | Puppo, Gabriella

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 5 P.A2850

    https://doi.org/10.1137/18M1232954 [Citations: 21]
  11. Recasting an operator splitting solver into a standard finite volume flux-based algorithm. The case of a Lagrange-projection-type method for gas dynamics

    Bourgeois, Rémi | Tremblin, Pascal | Kokh, Samuel | Padioleau, Thomas

    Journal of Computational Physics, Vol. 496 (2024), Iss. P.112594

    https://doi.org/10.1016/j.jcp.2023.112594 [Citations: 2]
  12. An implicit splitting scheme with characteristic boundary conditions for compressible reactive flows on unstructured grids

    Pries, Michael | Fiolitakis, Andreas | Gerlinger, Peter

    Journal of Computational and Applied Mathematics, Vol. 437 (2024), Iss. P.115446

    https://doi.org/10.1016/j.cam.2023.115446 [Citations: 4]
  13. An All-Regime, Well-Balanced, Positive and Entropy Satisfying One-Step Finite Volume Scheme for the Euler's Equations of Gas Dynamics with Gravity

    Bourgeois, Rémi | Tremblin, Pascal | Kokh, Samuel | Padioleau, Thomas

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4089081 [Citations: 0]
  14. A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics

    Barsukow, Wasilij | Edelmann, Philipp V. F. | Klingenberg, Christian | Miczek, Fabian | Röpke, Friedrich K.

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.623

    https://doi.org/10.1007/s10915-017-0372-4 [Citations: 26]
  15. A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations

    Tremblin, Pascal | Bourgeois, Rémi | Bulteau, Solène | Kokh, Samuel | Padioleau, Thomas | Delorme, Maxime | Strugarek, Antoine | González, Matthias | Brun, Allan Sacha

    Journal of Computational Physics, Vol. 519 (2024), Iss. P.113455

    https://doi.org/10.1016/j.jcp.2024.113455 [Citations: 0]
  16. An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime

    Zou, Ziqiang | Audit, Edouard | Grenier, Nicolas | Tenaud, Christian

    Flow, Turbulence and Combustion, Vol. 105 (2020), Iss. 4 P.1413

    https://doi.org/10.1007/s10494-020-00125-1 [Citations: 3]
  17. A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System

    Caballero-Cárdenas, Celia | Castro, Manuel Jesús | Chalons, Christophe | Morales de Luna, Tomás | Muñoz-Ruiz, María Luz

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2503

    https://doi.org/10.1137/23M1621289 [Citations: 0]
  18. A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid

    Vazquez-Gonzalez, Thibaud | Llor, Antoine | Fochesato, Christophe

    International Journal of Multiphase Flow, Vol. 132 (2020), Iss. P.103324

    https://doi.org/10.1016/j.ijmultiphaseflow.2020.103324 [Citations: 6]
  19. MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver

    Fan, Duoming | Nonaka, Andrew | Almgren, Ann S. | Harpole, Alice | Zingale, Michael

    The Astrophysical Journal, Vol. 887 (2019), Iss. 2 P.212

    https://doi.org/10.3847/1538-4357/ab4f75 [Citations: 15]
  20. Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime

    Dimarco, Giacomo | Loubère, Raphaël | Michel-Dansac, Victor | Vignal, Marie-Hélène

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.178

    https://doi.org/10.1016/j.jcp.2018.06.022 [Citations: 26]
  21. Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system

    Caballero-Cárdenas, C. | Castro, M.J. | Morales de Luna, T. | Muñoz-Ruiz, M.L.

    Applied Mathematics and Computation, Vol. 443 (2023), Iss. P.127784

    https://doi.org/10.1016/j.amc.2022.127784 [Citations: 2]
  22. A second-order extension of a robust implicit–explicit acoustic-transport splitting scheme for two-phase flows

    Tallois, Lucas | Peluchon, Simon | Villedieu, Philippe

    Computers & Fluids, Vol. 244 (2022), Iss. P.105531

    https://doi.org/10.1016/j.compfluid.2022.105531 [Citations: 1]
  23. Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime

    Zou, Ziqiang | Grenier, Nicolas | Kokh, Samuel | Tenaud, Christian | Audit, Edouard

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110735

    https://doi.org/10.1016/j.jcp.2021.110735 [Citations: 1]
  24. Steady low Mach number flows: Identification of the spurious mode and filtering method

    Jung, Jonathan | Perrier, Vincent

    Journal of Computational Physics, Vol. 468 (2022), Iss. P.111462

    https://doi.org/10.1016/j.jcp.2022.111462 [Citations: 4]
  25. Numerical Approximation of Hyperbolic Systems of Conservation Laws

    The Case of Multidimensional Systems

    Godlewski, Edwige | Raviart, Pierre-Arnaud

    2021

    https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0]
  26. Accurate steam-water equation of state for two-phase flow LMNC model with phase transition

    Dellacherie, Stéphane | Faccanoni, Gloria | Grec, Bérénice | Penel, Yohan

    Applied Mathematical Modelling, Vol. 65 (2019), Iss. P.207

    https://doi.org/10.1016/j.apm.2018.07.028 [Citations: 2]
  27. A low-diffusion self-adaptive flux-vector splitting approach for compressible flows

    Iampietro, D. | Daude, F. | Galon, P.

    Computers & Fluids, Vol. 206 (2020), Iss. P.104586

    https://doi.org/10.1016/j.compfluid.2020.104586 [Citations: 4]
  28. Development of numerical methods to simulate the melting of a thermal protection system

    Peluchon, S. | Gallice, G. | Mieussens, L.

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110753

    https://doi.org/10.1016/j.jcp.2021.110753 [Citations: 2]
  29. Recent Advances in Numerical Methods for Hyperbolic PDE Systems

    Entropy Stable Numerical Fluxes for Compressible Euler Equations Which Are Suitable for All Mach Numbers

    Berberich, Jonas P. | Klingenberg, Christian

    2021

    https://doi.org/10.1007/978-3-030-72850-2_8 [Citations: 0]
  30. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    ten Eikelder, M.F.P. | Daude, F. | Koren, B. | Tijsseling, A.S.

    Journal of Computational Physics, Vol. 331 (2017), Iss. P.188

    https://doi.org/10.1016/j.jcp.2016.11.031 [Citations: 12]
  31. A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations

    Boscheri, Walter | Dimarco, Giacomo | Loubère, Raphaël | Tavelli, Maurizio | Vignal, Marie-Hélène

    Journal of Computational Physics, Vol. 415 (2020), Iss. P.109486

    https://doi.org/10.1016/j.jcp.2020.109486 [Citations: 34]
  32. Thermo-compositional Diabatic Convection in the Atmospheres of Brown Dwarfs and in Earth’s Atmosphere and Oceans

    Tremblin, P. | Padioleau, T. | Phillips, M. W. | Chabrier, G. | Baraffe, I. | Fromang, S. | Audit, E. | Bloch, H. | Burgasser, A. J. | Drummond, B. | González, M. | Kestener, P. | Kokh, S. | Lagage, P.-O. | Stauffert, M.

    The Astrophysical Journal, Vol. 876 (2019), Iss. 2 P.144

    https://doi.org/10.3847/1538-4357/ab05db [Citations: 41]
  33. Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity

    Dellacherie, Stéphane | Jung, Jonathan | Omnes, Pascal

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 3 P.1199

    https://doi.org/10.1051/m2an/2021016 [Citations: 3]
  34. A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in lagrangian frame

    Labourasse, E.

    Computers & Fluids, Vol. 179 (2019), Iss. P.372

    https://doi.org/10.1016/j.compfluid.2018.11.005 [Citations: 3]
  35. An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes

    Chalons, Christophe | Girardin, Mathieu | Kokh, Samuel

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.885

    https://doi.org/10.1016/j.jcp.2017.01.017 [Citations: 27]
  36. All-Speed Numerical Methods for the Euler Equations via a Sequential Explicit Time Integration

    Barsukow, Wasilij

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 2

    https://doi.org/10.1007/s10915-023-02152-2 [Citations: 2]
  37. An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasmas at low-pressure

    Alvarez Laguna, A. | Pichard, T. | Magin, T. | Chabert, P. | Bourdon, A. | Massot, M.

    Journal of Computational Physics, Vol. 419 (2020), Iss. P.109634

    https://doi.org/10.1016/j.jcp.2020.109634 [Citations: 8]
  38. Truly multi-dimensional all-speed schemes for the Euler equations on Cartesian grids

    Barsukow, Wasilij

    Journal of Computational Physics, Vol. 435 (2021), Iss. P.110216

    https://doi.org/10.1016/j.jcp.2021.110216 [Citations: 11]
  39. A low Mach correction able to deal with low Mach acoustics

    Bruel, Pascal | Delmas, Simon | Jung, Jonathan | Perrier, Vincent

    Journal of Computational Physics, Vol. 378 (2019), Iss. P.723

    https://doi.org/10.1016/j.jcp.2018.11.020 [Citations: 14]
  40. An entropy satisfying two-speed relaxation system for the barotropic Euler equations: application to the numerical approximation of low Mach number flows

    Bouchut, François | Chalons, Christophe | Guisset, Sébastien

    Numerische Mathematik, Vol. 145 (2020), Iss. 1 P.35

    https://doi.org/10.1007/s00211-020-01111-5 [Citations: 6]
  41. A Mach-sensitive implicit–explicit scheme adapted to compressible multi-scale flows

    Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.

    Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.122

    https://doi.org/10.1016/j.cam.2018.02.019 [Citations: 10]
  42. A Mach-sensitive splitting approach for Euler-like systems

    Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 1 P.207

    https://doi.org/10.1051/m2an/2017063 [Citations: 9]
  43. A robust implicit–explicit acoustic-transport splitting scheme for two-phase flows

    Peluchon, S. | Gallice, G. | Mieussens, L.

    Journal of Computational Physics, Vol. 339 (2017), Iss. P.328

    https://doi.org/10.1016/j.jcp.2017.03.019 [Citations: 10]
  44. An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit

    Arun, K. R. | Ghorai, Rahuldev | Kar, Mainak

    Journal of Scientific Computing, Vol. 97 (2023), Iss. 3

    https://doi.org/10.1007/s10915-023-02389-x [Citations: 2]
  45. A novel approach to the characteristic splitting scheme for mildly compressible flows based on the weighted averaged flux method

    Fiolitakis, A. | Pries, M.

    Journal of Computational Physics, Vol. 513 (2024), Iss. P.113197

    https://doi.org/10.1016/j.jcp.2024.113197 [Citations: 0]
  46. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

    A High-Order Discontinuous Galerkin Lagrange Projection Scheme for the Barotropic Euler Equations

    Chalons, Christophe | Stauffert, Maxime

    2017

    https://doi.org/10.1007/978-3-319-57394-6_7 [Citations: 0]
  47. A high-performance and portable asymptotic preserving radiation hydrodynamics code with the M1 model

    Bloch, H. | Tremblin, P. | González, M. | Padioleau, T. | Audit, E.

    Astronomy & Astrophysics, Vol. 646 (2021), Iss. P.A123

    https://doi.org/10.1051/0004-6361/202038579 [Citations: 7]
  48. Asymptotic-preserving schemes for multiscale physical problems

    Jin, Shi

    Acta Numerica, Vol. 31 (2022), Iss. P.415

    https://doi.org/10.1017/S0962492922000010 [Citations: 30]