Year: 2016
Communications in Computational Physics, Vol. 20 (2016), Iss. 1 : pp. 188–233
Abstract
We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M, i.e. such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1. The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and efficient semi-implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.260614.061115a
Communications in Computational Physics, Vol. 20 (2016), Iss. 1 : pp. 188–233
Published online: 2016-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 46
-
Idealised 3D simulations of diabatically forced Ledoux convection
Daley-Yates, Simon | Padioleau, Thomas | Tremblin, Pascal | Kestener, Pierre | Mancip, MartialAstronomy & Astrophysics, Vol. 653 (2021), Iss. P.A54
https://doi.org/10.1051/0004-6361/202040120 [Citations: 2] -
An Antidiffusive HLL Scheme for the Electronic $M_1$ Model in the Diffusion Limit
Chalons, C. | Guisset, S.Multiscale Modeling & Simulation, Vol. 16 (2018), Iss. 2 P.991
https://doi.org/10.1137/18M1126692 [Citations: 4] -
On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow water equations
Del Grosso, A. | Castro Díaz, M. | Chalons, C. | Morales de Luna, T.Applied Mathematics and Computation, Vol. 442 (2023), Iss. P.127702
https://doi.org/10.1016/j.amc.2022.127702 [Citations: 2] -
An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations
Boscheri, Walter | Dimarco, Giacomo | Tavelli, MaurizioComputer Methods in Applied Mechanics and Engineering, Vol. 374 (2021), Iss. P.113602
https://doi.org/10.1016/j.cma.2020.113602 [Citations: 27] -
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
A Weighted Splitting Approach for Low-Mach Number Flows
Iampietro, David | Daude, Frédéric | Galon, Pascal | Hérard, Jean-Marc2017
https://doi.org/10.1007/978-3-319-57394-6_1 [Citations: 1] -
Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems
Study of a Numerical Scheme with Transport-Acoustic Operator Splitting on a Staggered Mesh
Halabi, Ahmad El | Fernier, Pierre | Galie, Thomas | Kokh, Samuel | Saleh, Khaled2023
https://doi.org/10.1007/978-3-031-40860-1_13 [Citations: 0] -
Second-order well-balanced Lagrange-projection schemes for blood flow equations
Del Grosso, A. | Chalons, C.Calcolo, Vol. 58 (2021), Iss. 4
https://doi.org/10.1007/s10092-021-00434-5 [Citations: 4] -
A Fully Well-Balanced Lagrange--Projection-Type Scheme for the Shallow-Water Equations
Castro Díaz, Manuel J. | Chalons, Christophe | de Luna, Tomás MoralesSIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 5 P.3071
https://doi.org/10.1137/17M1156101 [Citations: 13] -
A High-performance and Portable All-Mach Regime Flow Solver Code with Well-balanced Gravity. Application to Compressible Convection
Padioleau, Thomas | Tremblin, Pascal | Audit, Edouard | Kestener, Pierre | Kokh, SamuelThe Astrophysical Journal, Vol. 875 (2019), Iss. 2 P.128
https://doi.org/10.3847/1538-4357/ab0f2c [Citations: 12] -
An Asymptotic-Preserving All-Speed Scheme for Fluid Dynamics and Nonlinear Elasticity
Abbate, Emanuela | Iollo, Angelo | Puppo, GabriellaSIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 5 P.A2850
https://doi.org/10.1137/18M1232954 [Citations: 21] -
Recasting an operator splitting solver into a standard finite volume flux-based algorithm. The case of a Lagrange-projection-type method for gas dynamics
Bourgeois, Rémi | Tremblin, Pascal | Kokh, Samuel | Padioleau, ThomasJournal of Computational Physics, Vol. 496 (2024), Iss. P.112594
https://doi.org/10.1016/j.jcp.2023.112594 [Citations: 2] -
An implicit splitting scheme with characteristic boundary conditions for compressible reactive flows on unstructured grids
Pries, Michael | Fiolitakis, Andreas | Gerlinger, PeterJournal of Computational and Applied Mathematics, Vol. 437 (2024), Iss. P.115446
https://doi.org/10.1016/j.cam.2023.115446 [Citations: 4] -
An All-Regime, Well-Balanced, Positive and Entropy Satisfying One-Step Finite Volume Scheme for the Euler's Equations of Gas Dynamics with Gravity
Bourgeois, Rémi | Tremblin, Pascal | Kokh, Samuel | Padioleau, ThomasSSRN Electronic Journal , Vol. (2022), Iss.
https://doi.org/10.2139/ssrn.4089081 [Citations: 0] -
A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics
Barsukow, Wasilij | Edelmann, Philipp V. F. | Klingenberg, Christian | Miczek, Fabian | Röpke, Friedrich K.Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.623
https://doi.org/10.1007/s10915-017-0372-4 [Citations: 26] -
A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations
Tremblin, Pascal | Bourgeois, Rémi | Bulteau, Solène | Kokh, Samuel | Padioleau, Thomas | Delorme, Maxime | Strugarek, Antoine | González, Matthias | Brun, Allan SachaJournal of Computational Physics, Vol. 519 (2024), Iss. P.113455
https://doi.org/10.1016/j.jcp.2024.113455 [Citations: 0] -
An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime
Zou, Ziqiang | Audit, Edouard | Grenier, Nicolas | Tenaud, ChristianFlow, Turbulence and Combustion, Vol. 105 (2020), Iss. 4 P.1413
https://doi.org/10.1007/s10494-020-00125-1 [Citations: 3] -
A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System
Caballero-Cárdenas, Celia | Castro, Manuel Jesús | Chalons, Christophe | Morales de Luna, Tomás | Muñoz-Ruiz, María LuzSIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2503
https://doi.org/10.1137/23M1621289 [Citations: 0] -
A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid
Vazquez-Gonzalez, Thibaud | Llor, Antoine | Fochesato, ChristopheInternational Journal of Multiphase Flow, Vol. 132 (2020), Iss. P.103324
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103324 [Citations: 6] -
MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver
Fan, Duoming | Nonaka, Andrew | Almgren, Ann S. | Harpole, Alice | Zingale, MichaelThe Astrophysical Journal, Vol. 887 (2019), Iss. 2 P.212
https://doi.org/10.3847/1538-4357/ab4f75 [Citations: 15] -
Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime
Dimarco, Giacomo | Loubère, Raphaël | Michel-Dansac, Victor | Vignal, Marie-HélèneJournal of Computational Physics, Vol. 372 (2018), Iss. P.178
https://doi.org/10.1016/j.jcp.2018.06.022 [Citations: 26] -
Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system
Caballero-Cárdenas, C. | Castro, M.J. | Morales de Luna, T. | Muñoz-Ruiz, M.L.Applied Mathematics and Computation, Vol. 443 (2023), Iss. P.127784
https://doi.org/10.1016/j.amc.2022.127784 [Citations: 2] -
A second-order extension of a robust implicit–explicit acoustic-transport splitting scheme for two-phase flows
Tallois, Lucas | Peluchon, Simon | Villedieu, PhilippeComputers & Fluids, Vol. 244 (2022), Iss. P.105531
https://doi.org/10.1016/j.compfluid.2022.105531 [Citations: 1] -
Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime
Zou, Ziqiang | Grenier, Nicolas | Kokh, Samuel | Tenaud, Christian | Audit, EdouardJournal of Computational Physics, Vol. 448 (2022), Iss. P.110735
https://doi.org/10.1016/j.jcp.2021.110735 [Citations: 1] -
Steady low Mach number flows: Identification of the spurious mode and filtering method
Jung, Jonathan | Perrier, VincentJournal of Computational Physics, Vol. 468 (2022), Iss. P.111462
https://doi.org/10.1016/j.jcp.2022.111462 [Citations: 4] -
Numerical Approximation of Hyperbolic Systems of Conservation Laws
The Case of Multidimensional Systems
Godlewski, Edwige | Raviart, Pierre-Arnaud2021
https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0] -
Accurate steam-water equation of state for two-phase flow LMNC model with phase transition
Dellacherie, Stéphane | Faccanoni, Gloria | Grec, Bérénice | Penel, YohanApplied Mathematical Modelling, Vol. 65 (2019), Iss. P.207
https://doi.org/10.1016/j.apm.2018.07.028 [Citations: 2] -
A low-diffusion self-adaptive flux-vector splitting approach for compressible flows
Iampietro, D. | Daude, F. | Galon, P.Computers & Fluids, Vol. 206 (2020), Iss. P.104586
https://doi.org/10.1016/j.compfluid.2020.104586 [Citations: 4] -
Development of numerical methods to simulate the melting of a thermal protection system
Peluchon, S. | Gallice, G. | Mieussens, L.Journal of Computational Physics, Vol. 448 (2022), Iss. P.110753
https://doi.org/10.1016/j.jcp.2021.110753 [Citations: 2] -
Recent Advances in Numerical Methods for Hyperbolic PDE Systems
Entropy Stable Numerical Fluxes for Compressible Euler Equations Which Are Suitable for All Mach Numbers
Berberich, Jonas P. | Klingenberg, Christian2021
https://doi.org/10.1007/978-3-030-72850-2_8 [Citations: 0] -
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
ten Eikelder, M.F.P. | Daude, F. | Koren, B. | Tijsseling, A.S.Journal of Computational Physics, Vol. 331 (2017), Iss. P.188
https://doi.org/10.1016/j.jcp.2016.11.031 [Citations: 12] -
A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations
Boscheri, Walter | Dimarco, Giacomo | Loubère, Raphaël | Tavelli, Maurizio | Vignal, Marie-HélèneJournal of Computational Physics, Vol. 415 (2020), Iss. P.109486
https://doi.org/10.1016/j.jcp.2020.109486 [Citations: 34] -
Thermo-compositional Diabatic Convection in the Atmospheres of Brown Dwarfs and in Earth’s Atmosphere and Oceans
Tremblin, P. | Padioleau, T. | Phillips, M. W. | Chabrier, G. | Baraffe, I. | Fromang, S. | Audit, E. | Bloch, H. | Burgasser, A. J. | Drummond, B. | González, M. | Kestener, P. | Kokh, S. | Lagage, P.-O. | Stauffert, M.The Astrophysical Journal, Vol. 876 (2019), Iss. 2 P.144
https://doi.org/10.3847/1538-4357/ab05db [Citations: 41] -
Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
Dellacherie, Stéphane | Jung, Jonathan | Omnes, PascalESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 3 P.1199
https://doi.org/10.1051/m2an/2021016 [Citations: 3] -
A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in lagrangian frame
Labourasse, E.
Computers & Fluids, Vol. 179 (2019), Iss. P.372
https://doi.org/10.1016/j.compfluid.2018.11.005 [Citations: 3] -
An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes
Chalons, Christophe | Girardin, Mathieu | Kokh, SamuelJournal of Computational Physics, Vol. 335 (2017), Iss. P.885
https://doi.org/10.1016/j.jcp.2017.01.017 [Citations: 27] -
All-Speed Numerical Methods for the Euler Equations via a Sequential Explicit Time Integration
Barsukow, Wasilij
Journal of Scientific Computing, Vol. 95 (2023), Iss. 2
https://doi.org/10.1007/s10915-023-02152-2 [Citations: 2] -
An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasmas at low-pressure
Alvarez Laguna, A. | Pichard, T. | Magin, T. | Chabert, P. | Bourdon, A. | Massot, M.Journal of Computational Physics, Vol. 419 (2020), Iss. P.109634
https://doi.org/10.1016/j.jcp.2020.109634 [Citations: 8] -
Truly multi-dimensional all-speed schemes for the Euler equations on Cartesian grids
Barsukow, Wasilij
Journal of Computational Physics, Vol. 435 (2021), Iss. P.110216
https://doi.org/10.1016/j.jcp.2021.110216 [Citations: 11] -
A low Mach correction able to deal with low Mach acoustics
Bruel, Pascal | Delmas, Simon | Jung, Jonathan | Perrier, VincentJournal of Computational Physics, Vol. 378 (2019), Iss. P.723
https://doi.org/10.1016/j.jcp.2018.11.020 [Citations: 14] -
An entropy satisfying two-speed relaxation system for the barotropic Euler equations: application to the numerical approximation of low Mach number flows
Bouchut, François | Chalons, Christophe | Guisset, SébastienNumerische Mathematik, Vol. 145 (2020), Iss. 1 P.35
https://doi.org/10.1007/s00211-020-01111-5 [Citations: 6] -
A Mach-sensitive implicit–explicit scheme adapted to compressible multi-scale flows
Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.122
https://doi.org/10.1016/j.cam.2018.02.019 [Citations: 10] -
A Mach-sensitive splitting approach for Euler-like systems
Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 1 P.207
https://doi.org/10.1051/m2an/2017063 [Citations: 9] -
A robust implicit–explicit acoustic-transport splitting scheme for two-phase flows
Peluchon, S. | Gallice, G. | Mieussens, L.Journal of Computational Physics, Vol. 339 (2017), Iss. P.328
https://doi.org/10.1016/j.jcp.2017.03.019 [Citations: 10] -
An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit
Arun, K. R. | Ghorai, Rahuldev | Kar, MainakJournal of Scientific Computing, Vol. 97 (2023), Iss. 3
https://doi.org/10.1007/s10915-023-02389-x [Citations: 2] -
A novel approach to the characteristic splitting scheme for mildly compressible flows based on the weighted averaged flux method
Fiolitakis, A. | Pries, M.Journal of Computational Physics, Vol. 513 (2024), Iss. P.113197
https://doi.org/10.1016/j.jcp.2024.113197 [Citations: 0] -
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
A High-Order Discontinuous Galerkin Lagrange Projection Scheme for the Barotropic Euler Equations
Chalons, Christophe | Stauffert, Maxime2017
https://doi.org/10.1007/978-3-319-57394-6_7 [Citations: 0] -
A high-performance and portable asymptotic preserving radiation hydrodynamics code with the M1 model
Bloch, H. | Tremblin, P. | González, M. | Padioleau, T. | Audit, E.Astronomy & Astrophysics, Vol. 646 (2021), Iss. P.A123
https://doi.org/10.1051/0004-6361/202038579 [Citations: 7] -
Asymptotic-preserving schemes for multiscale physical problems
Jin, Shi
Acta Numerica, Vol. 31 (2022), Iss. P.415
https://doi.org/10.1017/S0962492922000010 [Citations: 30]