Asymptotic-Preserving Scheme for the M<sub>1</sub>-Maxwell System in the Quasi-Neutral Regime

Asymptotic-Preserving Scheme for the M<sub>1</sub>-Maxwell System in the Quasi-Neutral Regime

Year:    2016

Author:    S. Guisset, S. Brull, B. Dubroca, E. d'Humières, S. Karpov, I. Potapenko

Communications in Computational Physics, Vol. 19 (2016), Iss. 2 : pp. 301–328

Abstract

This work deals with the numerical resolution of the M1-Maxwell system in the quasi-neutral regime. In this regime the stiffness of the stability constraints of classical schemes causes huge calculation times. That is why we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving scheme in different regimes. The first one corresponds to a regime where electromagnetic effects are predominant. The second one on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral regime. In the latter case the illustrative simulations are compared with kinetic and hydrodynamic numerical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.131014.030615a

Communications in Computational Physics, Vol. 19 (2016), Iss. 2 : pp. 301–328

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    28

Keywords:   

Author Details

S. Guisset

S. Brull

B. Dubroca

E. d'Humières

S. Karpov

I. Potapenko

  1. Long wave asymptotics for the Vlasov-Poisson-Landau equation

    Bobylev, Alexander Vasilievich | Potapenko, Irina Fedorovna

    Keldysh Institute Preprints, Vol. (2018), Iss. 121-e P.1

    https://doi.org/10.20948/prepr-2018-121-e [Citations: 0]
  2. An Antidiffusive HLL Scheme for the Electronic $M_1$ Model in the Diffusion Limit

    Chalons, C. | Guisset, S.

    Multiscale Modeling & Simulation, Vol. 16 (2018), Iss. 2 P.991

    https://doi.org/10.1137/18M1126692 [Citations: 4]
  3. Asymptotic-Preserving methods and multiscale models for plasma physics

    Degond, Pierre | Deluzet, Fabrice

    Journal of Computational Physics, Vol. 336 (2017), Iss. P.429

    https://doi.org/10.1016/j.jcp.2017.02.009 [Citations: 37]
  4. Numerical study of asymptotic damping of electric field long-wave oscillations for the Vlasov equation

    Potapenko, Irina Fedorovna

    Keldysh Institute Preprints, Vol. (2020), Iss. 93 P.1

    https://doi.org/10.20948/prepr-2020-93 [Citations: 0]
  5. High‐order asymptotic‐preserving schemes for linear systems: Application to the Goldstein–Taylor equations

    Chalons, Christophe | Turpault, Rodolphe

    Numerical Methods for Partial Differential Equations, Vol. 35 (2019), Iss. 4 P.1538

    https://doi.org/10.1002/num.22363 [Citations: 2]
  6. An Approximation of the $$M_2$$ M 2 Closure: Application to Radiotherapy Dose Simulation

    Pichard, T. | Alldredge, G. W. | Brull, S. | Dubroca, B. | Frank, M.

    Journal of Scientific Computing, Vol. 71 (2017), Iss. 1 P.71

    https://doi.org/10.1007/s10915-016-0292-8 [Citations: 7]
  7. On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data

    Bobylev, Alexander | Potapenko, Irina

    Kinetic and Related Models, Vol. 16 (2023), Iss. 1 P.20

    https://doi.org/10.3934/krm.2022020 [Citations: 0]
  8. Asymptotic-preserving well-balanced scheme for the electronic M1 model in the diffusive limit: Particular cases

    Guisset, Sébastien | Brull, Stéphane | D’Humières, Emmanuel | Dubroca, Bruno

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51 (2017), Iss. 5 P.1805

    https://doi.org/10.1051/m2an/2016079 [Citations: 4]
  9. Nonlocal Heat Transfer in a Laser Inertial Confinement Fusion for the Direct Irradiation Scheme

    Glazyrin, S. I. | Lykov, V. A. | Karpov, S. A. | Karlykhanov, N. G. | Gryaznykh, D. A. | Bychenkov, V. Yu.

    JETP Letters, Vol. 116 (2022), Iss. 2 P.83

    https://doi.org/10.1134/S0021364022601208 [Citations: 4]
  10. Space nonuniform electron kinetic equation solution by finite difference method in quasi neutral regime

    Karpov, Stanislav Alexandrovich | Potapenko, Irina Fedorovna

    Keldysh Institute Preprints, Vol. (2018), Iss. 93 P.1

    https://doi.org/10.20948/prepr-2018-93 [Citations: 0]
  11. The $M_1$ Angular Moments Model in a Velocity-Adaptive Frame for Rarefied Gas Dynamics Applications

    Guisset, S. | Aregba, D. | Brull, S. | Dubroca, B.

    Multiscale Modeling & Simulation, Vol. 15 (2017), Iss. 4 P.1719

    https://doi.org/10.1137/16M1099327 [Citations: 0]
  12. Robust numerical schemes for Two-Fluid Ten-Moment plasma flow equations

    Meena, Asha Kumari | Kumar, Harish

    Zeitschrift für angewandte Mathematik und Physik, Vol. 70 (2019), Iss. 1

    https://doi.org/10.1007/s00033-018-1061-3 [Citations: 3]