Divergence-Free WENO Reconstruction-Based Finite Volume Scheme for Solving Ideal MHD Equations on Triangular Meshes

Divergence-Free WENO Reconstruction-Based Finite Volume Scheme for Solving Ideal MHD Equations on Triangular Meshes

Year:    2016

Communications in Computational Physics, Vol. 19 (2016), Iss. 4 : pp. 841–880

Abstract

In this paper, we introduce a high-order accurate constrained transport type finite volume method to solve ideal magnetohydrodynamic equations on two-dimensional triangular meshes. A new divergence-free WENO-based reconstruction method is developed to maintain exactly divergence-free evolution of the numerical magnetic field. In this formulation, the normal component of the magnetic field at each face of a triangle is reconstructed uniquely and with the desired order of accuracy. Additionally, a new weighted flux interpolation approach is also developed to compute the z-component of the electric field at vertices of grid cells. We also present numerical examples to demonstrate the accuracy and robustness of the proposed scheme.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.050814.040915a

Communications in Computational Physics, Vol. 19 (2016), Iss. 4 : pp. 841–880

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    40

Keywords:   

  1. High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers

    Chen, Wei | Wu, Kailiang | Xiong, Tao

    Journal of Scientific Computing, Vol. 99 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02492-7 [Citations: 0]
  2. Exploring various flux vector splittings for the magnetohydrodynamic system

    Balsara, Dinshaw S. | Montecinos, Gino I. | Toro, Eleuterio F.

    Journal of Computational Physics, Vol. 311 (2016), Iss. P.1

    https://doi.org/10.1016/j.jcp.2016.01.029 [Citations: 18]
  3. A Runge-Kutta discontinuous Galerkin method for Lagrangian ideal magnetohydrodynamics equations in two-dimensions

    Zou, Shijun | Yu, Xijun | Dai, Zihuan

    Journal of Computational Physics, Vol. 386 (2019), Iss. P.384

    https://doi.org/10.1016/j.jcp.2019.02.019 [Citations: 4]
  4. Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD

    Chertock, Alina | Kurganov, Alexander | Redle, Michael | Zeitlin, Vladimir

    Journal of Computational Physics, Vol. 518 (2024), Iss. P.113300

    https://doi.org/10.1016/j.jcp.2024.113300 [Citations: 0]
  5. A New Discretely Divergence-Free Positivity-Preserving High-Order Finite Volume Method for Ideal MHD Equations

    Ding, Shengrong | Wu, Kailiang

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 1 P.A50

    https://doi.org/10.1137/23M1562081 [Citations: 2]
  6. Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods

    Balsara, Dinshaw S.

    Living Reviews in Computational Astrophysics, Vol. 3 (2017), Iss. 1

    https://doi.org/10.1007/s41115-017-0002-8 [Citations: 40]
  7. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Maxwell and Magnetohydrodynamic Equations

    Munz, C.-D. | Sonnendrücker, E.

    2017

    https://doi.org/10.1016/bs.hna.2016.10.006 [Citations: 0]
  8. Entropy stable scheme for ideal MHD equations on adaptive unstructured meshes

    Zhang, Chengzhi | Zheng, Supei | Feng, Jianhu | Liu, Shasha

    Computers & Fluids, Vol. 285 (2024), Iss. P.106445

    https://doi.org/10.1016/j.compfluid.2024.106445 [Citations: 0]
  9. Multidimensional Generalized Riemann Problem Solver for Maxwell’s Equations

    Hazra, Arijit | Balsara, Dinshaw S. | Chandrashekar, Praveen | Garain, Sudip K.

    Journal of Scientific Computing, Vol. 96 (2023), Iss. 1

    https://doi.org/10.1007/s10915-023-02238-x [Citations: 1]
  10. Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes

    Wu, Kailiang | Shu, Chi-Wang

    Numerische Mathematik, Vol. 142 (2019), Iss. 4 P.995

    https://doi.org/10.1007/s00211-019-01042-w [Citations: 51]
  11. A Robust and Contact Resolving Riemann Solver for the Two-Dimensional Ideal Magnetohydrodynamics Equations

    Wang, Xun | Guo, Hongping | Shen, Zhijun

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4122885 [Citations: 0]
  12. Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers

    Balsara, Dinshaw S. | Käppeli, Roger

    Journal of Computational Physics, Vol. 336 (2017), Iss. P.104

    https://doi.org/10.1016/j.jcp.2017.01.056 [Citations: 28]
  13. New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field

    Xu, Zhiliang | Liu, Yingjie

    Journal of Computational Physics, Vol. 327 (2016), Iss. P.203

    https://doi.org/10.1016/j.jcp.2016.09.044 [Citations: 13]
  14. von Neumann stability analysis of globally constraint-preserving DGTD and PNPM schemes for the Maxwell equations using multidimensional Riemann solvers

    Balsara, Dinshaw S. | Käppeli, Roger

    Journal of Computational Physics, Vol. 376 (2019), Iss. P.1108

    https://doi.org/10.1016/j.jcp.2018.09.051 [Citations: 16]
  15. Globally divergence-free DG scheme for ideal compressible MHD

    Balsara, Dinshaw S. | Kumar, Rakesh | Chandrashekar, Praveen

    Communications in Applied Mathematics and Computational Science, Vol. 16 (2021), Iss. 1 P.59

    https://doi.org/10.2140/camcos.2021.16.59 [Citations: 8]
  16. Two‐level stabilized finite volume method for the stationary incompressible magnetohydrodynamic equations

    Chu, Xiaochen | Chen, Chuanjun | Zhang, Tong

    Numerical Methods for Partial Differential Equations, Vol. 39 (2023), Iss. 6 P.4196

    https://doi.org/10.1002/num.23043 [Citations: 2]
  17. Globally constraint-preserving FR/DG scheme for Maxwell's equations at all orders

    Hazra, Arijit | Chandrashekar, Praveen | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 394 (2019), Iss. P.298

    https://doi.org/10.1016/j.jcp.2019.06.003 [Citations: 15]
  18. A New Locally Divergence-Free Path-Conservative Central-Upwind Scheme for Ideal and Shallow Water Magnetohydrodynamics

    Chertock, Alina | Kurganov, Alexander | Redle, Michael | Wu, Kailiang

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 3 P.A1998

    https://doi.org/10.1137/22M1539009 [Citations: 1]
  19. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution – Part I, second-order FVTD schemes

    Balsara, Dinshaw S. | Taflove, Allen | Garain, Sudip | Montecinos, Gino

    Journal of Computational Physics, Vol. 349 (2017), Iss. P.604

    https://doi.org/10.1016/j.jcp.2017.07.024 [Citations: 22]
  20. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution – Part II, higher order FVTD schemes

    Balsara, Dinshaw S. | Garain, Sudip | Taflove, Allen | Montecinos, Gino

    Journal of Computational Physics, Vol. 354 (2018), Iss. P.613

    https://doi.org/10.1016/j.jcp.2017.10.013 [Citations: 23]
  21. Application of the TV-HLL scheme to multidimensional ideal magnetohydrodynamic flows

    Tiam Kapen, P. | Fogang, F. | Tchuen, G.

    Shock Waves, Vol. 32 (2022), Iss. 1 P.103

    https://doi.org/10.1007/s00193-021-01057-z [Citations: 0]
  22. An efficient class of WENO schemes with adaptive order for unstructured meshes

    Balsara, Dinshaw S. | Garain, Sudip | Florinski, Vladimir | Boscheri, Walter

    Journal of Computational Physics, Vol. 404 (2020), Iss. P.109062

    https://doi.org/10.1016/j.jcp.2019.109062 [Citations: 53]
  23. A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations

    Dhaouadi, Firas | Dumbser, Michael

    Mathematics, Vol. 11 (2023), Iss. 4 P.876

    https://doi.org/10.3390/math11040876 [Citations: 3]
  24. Optimal, globally constraint-preserving, DG(TD)2 schemes for computational electrodynamics based on two-derivative Runge-Kutta timestepping and multidimensional generalized Riemann problem solvers – A von Neumann stability analysis

    Käppeli, Roger | Balsara, Dinshaw S. | Chandrashekar, Praveen | Hazra, Arijit

    Journal of Computational Physics, Vol. 408 (2020), Iss. P.109238

    https://doi.org/10.1016/j.jcp.2020.109238 [Citations: 4]
  25. High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers

    Chen, Wei | Wu, Kailiang | Xiong, Tao

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112240

    https://doi.org/10.1016/j.jcp.2023.112240 [Citations: 5]
  26. Making a Synthesis of FDTD and DGTD Schemes for Computational Electromagnetics

    Balsara, Dinshaw S. | Simpson, Jamesina J.

    IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5 (2020), Iss. P.99

    https://doi.org/10.1109/JMMCT.2020.3001910 [Citations: 10]
  27. A robust and contact resolving Riemann solver for the two-dimensional ideal magnetohydrodynamics equations

    Wang, Xun | Guo, Hongping | Shen, Zhijun

    Journal of Computational Physics, Vol. 487 (2023), Iss. P.112138

    https://doi.org/10.1016/j.jcp.2023.112138 [Citations: 1]
  28. Efficient, divergence-free, high-order MHD on 3D spherical meshes with optimal geodesic meshing

    Balsara, Dinshaw S | Florinski, Vladimir | Garain, Sudip | Subramanian, Sethupathy | Gurski, Katharine F

    Monthly Notices of the Royal Astronomical Society, Vol. 487 (2019), Iss. 1 P.1283

    https://doi.org/10.1093/mnras/stz1263 [Citations: 13]
  29. An Exactly Curl-Free Finite-Volume/Finite-Difference Scheme for a Hyperbolic Compressible Isentropic Two-Phase Model

    Río-Martín, Laura | Dhaouadi, Firas | Dumbser, Michael

    Journal of Scientific Computing, Vol. 102 (2025), Iss. 1

    https://doi.org/10.1007/s10915-024-02733-9 [Citations: 0]
  30. Curl Constraint-Preserving Reconstruction and the Guidance it Gives for Mimetic Scheme Design

    Balsara, Dinshaw S. | Käppeli, Roger | Boscheri, Walter | Dumbser, Michael

    Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 1 P.235

    https://doi.org/10.1007/s42967-021-00160-3 [Citations: 6]