A Computational Study of a Data Assimilation Algorithm for the Two-Dimensional Navier-Stokes Equations

A Computational Study of a Data Assimilation Algorithm for the Two-Dimensional Navier-Stokes Equations

Year:    2016

Communications in Computational Physics, Vol. 19 (2016), Iss. 4 : pp. 1094–1110

Abstract

We study the numerical performance of a continuous data assimilation (downscaling) algorithm, based on ideas from feedback control theory, in the context of the two-dimensional incompressible Navier-Stokes equations. Our model problem is to recover an unknown reference solution, asymptotically in time, by using continuous-in-time coarse-mesh nodal-point observational measurements of the velocity field of this reference solution (subsampling), as might be measured by an array of weather vane anemometers. Our calculations show that the required nodal observation density is remarkably less than what is suggested by the analytical study; and is in fact comparable to the number of numerically determining Fourier modes, which was reported in an earlier computational study by the authors. Thus, this method is computationally efficient and performs far better than the analytical estimates suggest.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.060515.161115a

Communications in Computational Physics, Vol. 19 (2016), Iss. 4 : pp. 1094–1110

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:   

  1. Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations

    Larios, Adam | Rebholz, Leo G. | Zerfas, Camille

    Computer Methods in Applied Mechanics and Engineering, Vol. 345 (2019), Iss. P.1077

    https://doi.org/10.1016/j.cma.2018.09.004 [Citations: 31]
  2. Identifying the body force from partial observations of a two-dimensional incompressible velocity field

    Farhat, Aseel | Larios, Adam | Martinez, Vincent R. | Whitehead, Jared P.

    Physical Review Fluids, Vol. 9 (2024), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.9.054602 [Citations: 2]
  3. Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations

    Mondaini, Cecilia F. | Titi, Edriss S. | Biswas, Animikh | Foias, Ciprian

    Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Vol. 36 (2019), Iss. 2 P.295

    https://doi.org/10.1016/j.anihpc.2018.05.004 [Citations: 25]
  4. Assimilation of Nearly Turbulent Rayleigh–Bénard Flow Through Vorticity or Local Circulation Measurements: A Computational Study

    Farhat, Aseel | Johnston, Hans | Jolly, Michael | Titi, Edriss S.

    Journal of Scientific Computing, Vol. 77 (2018), Iss. 3 P.1519

    https://doi.org/10.1007/s10915-018-0686-x [Citations: 28]
  5. Analysis and computation of continuous data assimilation algorithms for Lorenz 63 system based on nonlinear nudging techniques

    Du, Yi Juan | Shiue, Ming-Cheng

    Journal of Computational and Applied Mathematics, Vol. 386 (2021), Iss. P.113246

    https://doi.org/10.1016/j.cam.2020.113246 [Citations: 3]
  6. Determining the viscosity of the Navier–Stokes equations from observations of finitely many modes

    Biswas, Animikh | Hudson, Joshua

    Inverse Problems, Vol. 39 (2023), Iss. 12 P.125012

    https://doi.org/10.1088/1361-6420/ad065f [Citations: 3]
  7. Efficient dynamical downscaling of general circulation models using continuous data assimilation

    Desamsetti, Srinivas | Dasari, Hari Prasad | Langodan, Sabique | Titi, Edriss S. | Knio, Omar | Hoteit, Ibrahim

    Quarterly Journal of the Royal Meteorological Society, Vol. 145 (2019), Iss. 724 P.3175

    https://doi.org/10.1002/qj.3612 [Citations: 29]
  8. Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm

    Mondaini, Cecilia F. | Titi, Edriss S.

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.78

    https://doi.org/10.1137/16M110962X [Citations: 33]
  9. Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations

    Biswas, Animikh | Martinez, Vincent R.

    Nonlinear Analysis: Real World Applications, Vol. 35 (2017), Iss. P.132

    https://doi.org/10.1016/j.nonrwa.2016.10.005 [Citations: 24]
  10. Continuous data assimilation for the 3D and higher-dimensional Navier–Stokes equations with higher-order fractional diffusion

    Larios, Adam | Victor, Collin

    Journal of Mathematical Analysis and Applications, Vol. 540 (2024), Iss. 1 P.128644

    https://doi.org/10.1016/j.jmaa.2024.128644 [Citations: 1]
  11. Data assimilation with higher order finite element interpolants

    Jolly, Michael S. | Pakzad, Ali

    International Journal for Numerical Methods in Fluids, Vol. 95 (2023), Iss. 3 P.472

    https://doi.org/10.1002/fld.5152 [Citations: 3]
  12. Data Assimilation in Large Prandtl Rayleigh--Bénard Convection from Thermal Measurements

    Farhat, A. | Glatt-Holtz, N. E. | Martinez, V. R. | McQuarrie, S. A. | Whitehead, J. P.

    SIAM Journal on Applied Dynamical Systems, Vol. 19 (2020), Iss. 1 P.510

    https://doi.org/10.1137/19M1248327 [Citations: 28]
  13. Algebraic bounds on the Rayleigh–Bénard attractor

    Cao, Yu | Jolly, Michael S | Titi, Edriss S | Whitehead, Jared P

    Nonlinearity, Vol. 34 (2021), Iss. 1 P.509

    https://doi.org/10.1088/1361-6544/abb1c6 [Citations: 10]
  14. Data-driven stochastic spectral modeling for coarsening of the two-dimensional Euler equations on the sphere

    Ephrati, Sagy R. | Cifani, Paolo | Viviani, Milo | Geurts, Bernard J.

    Physics of Fluids, Vol. 35 (2023), Iss. 9

    https://doi.org/10.1063/5.0156942 [Citations: 5]
  15. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations

    Gardner, Matthew | Larios, Adam | Rebholz, Leo G. | Vargun, Duygu | Zerfas, Camille

    Electronic Research Archive, Vol. 29 (2021), Iss. 3 P.2223

    https://doi.org/10.3934/era.2020113 [Citations: 17]
  16. Well posedness and maximum entropy approximation for the dynamics of quantitative traits

    Boďová, Katarína | Haskovec, Jan | Markowich, Peter

    Physica D: Nonlinear Phenomena, Vol. 376-377 (2018), Iss. P.108

    https://doi.org/10.1016/j.physd.2017.10.015 [Citations: 3]
  17. Continuous data assimilation for displacement in a porous medium

    Bessaih, H. | Ginting, V. | McCaskill, B.

    Numerische Mathematik, Vol. 151 (2022), Iss. 4 P.927

    https://doi.org/10.1007/s00211-022-01306-y [Citations: 4]
  18. Data Assimilation Using Time-Delay Nudging in the Presence of Gaussian Noise

    Celik, Emine | Olson, Eric

    Journal of Nonlinear Science, Vol. 33 (2023), Iss. 6

    https://doi.org/10.1007/s00332-023-09967-1 [Citations: 1]
  19. Parameter Recovery for the 2 Dimensional Navier--Stokes Equations via Continuous Data Assimilation

    Carlson, Elizabeth | Hudson, Joshua | Larios, Adam

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 1 P.A250

    https://doi.org/10.1137/19M1248583 [Citations: 30]
  20. Continuous and discrete data assimilation with noisy observations for the Rayleigh-Bénard convection: a computational study

    Hammoud, Mohamad Abed El Rahman | Le Maître, Olivier | Titi, Edriss S. | Hoteit, Ibrahim | Knio, Omar

    Computational Geosciences, Vol. 27 (2023), Iss. 1 P.63

    https://doi.org/10.1007/s10596-022-10180-4 [Citations: 2]
  21. Super-Exponential Convergence Rate of a Nonlinear Continuous Data Assimilation Algorithm: The 2D Navier–Stokes Equation Paradigm

    Carlson, Elizabeth | Larios, Adam | Titi, Edriss S.

    Journal of Nonlinear Science, Vol. 34 (2024), Iss. 2

    https://doi.org/10.1007/s00332-024-10014-w [Citations: 3]
  22. The bleeps, the sweeps, and the creeps: Convergence rates for dynamic observer patterns via data assimilation for the 2D Navier–Stokes equations

    Franz, Trenton | Larios, Adam | Victor, Collin

    Computer Methods in Applied Mechanics and Engineering, Vol. 392 (2022), Iss. P.114673

    https://doi.org/10.1016/j.cma.2022.114673 [Citations: 9]
  23. Sensitivity Analysis for the 2D Navier–Stokes Equations with Applications to Continuous Data Assimilation

    Carlson, Elizabeth | Larios, Adam

    Journal of Nonlinear Science, Vol. 31 (2021), Iss. 5

    https://doi.org/10.1007/s00332-021-09739-9 [Citations: 13]
  24. On the reconstruction of unknown driving forces from low-mode observations in the 2D Navier–Stokes equations

    Martinez, Vincent R.

    Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Vol. (2024), Iss. P.1

    https://doi.org/10.1017/prm.2024.31 [Citations: 0]
  25. A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier--Stokes Equations and Their Statistics

    Foias, Ciprian | Mondaini, Cecilia F. | Titi, Edriss S.

    SIAM Journal on Applied Dynamical Systems, Vol. 15 (2016), Iss. 4 P.2109

    https://doi.org/10.1137/16M1076526 [Citations: 69]
  26. A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation

    Jolly, Michael S. | Martinez, Vincent R. | Titi, Edriss S.

    Advanced Nonlinear Studies, Vol. 17 (2017), Iss. 1 P.167

    https://doi.org/10.1515/ans-2016-6019 [Citations: 35]
  27. Direct and Large Eddy Simulation XIII

    Stochastic Data-Driven POD-Based Modeling for High-Fidelity Coarsening of Two-Dimensional Rayleigh-Bénard Turbulence

    Ephrati, S. R. | Cifani, P. | Geurts, B. J.

    2024

    https://doi.org/10.1007/978-3-031-47028-8_32 [Citations: 1]
  28. Variational data assimilation with finite-element discretization for second-order parabolic interface equation

    Li, Xuejian | He, Xiaoming | Gong, Wei | Douglas, Craig C

    IMA Journal of Numerical Analysis, Vol. (2024), Iss.

    https://doi.org/10.1093/imanum/drae010 [Citations: 0]
  29. Uniform in Time Error Estimates for a Finite Element Method Applied to a Downscaling Data Assimilation Algorithm for the Navier--Stokes Equations

    García-Archilla, Bosco | Novo, Julia | Titi, Edriss S.

    SIAM Journal on Numerical Analysis, Vol. 58 (2020), Iss. 1 P.410

    https://doi.org/10.1137/19M1246845 [Citations: 24]
  30. One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations

    Foias, Ciprian | Jolly, Michael S. | Lithio, Dan | Titi, Edriss S.

    Journal of Nonlinear Science, Vol. 27 (2017), Iss. 5 P.1513

    https://doi.org/10.1007/s00332-017-9375-4 [Citations: 5]
  31. Continuous Data Assimilation for the Three-Dimensional Navier--Stokes Equations

    Biswas, Animikh | Price, Randy

    SIAM Journal on Mathematical Analysis, Vol. 53 (2021), Iss. 6 P.6697

    https://doi.org/10.1137/20M1323229 [Citations: 18]
  32. Data assimilation with model error: Analytical and computational study for Sabra shell model

    Chen, Nan | Farhat, Aseel | Lunasin, Evelyn

    Physica D: Nonlinear Phenomena, Vol. 443 (2023), Iss. P.133552

    https://doi.org/10.1016/j.physd.2022.133552 [Citations: 1]
  33. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    Neale, Christopher M. U. | Maltese, Antonino | Altaf, Muhammad U. | Jana, Raghavendra B. | Hoteit, Ibrahim | McCabe, Matthew F.

    Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, (2016), P.99981O

    https://doi.org/10.1117/12.2241042 [Citations: 0]
  34. Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates

    Ibdah, Hussain A | Mondaini, Cecilia F | Titi, Edriss S

    IMA Journal of Numerical Analysis, Vol. 40 (2020), Iss. 4 P.2584

    https://doi.org/10.1093/imanum/drz043 [Citations: 22]
  35. Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging

    Clark Di Leoni, Patricio | Mazzino, Andrea | Biferale, Luca

    Physical Review Fluids, Vol. 3 (2018), Iss. 10

    https://doi.org/10.1103/PhysRevFluids.3.104604 [Citations: 36]
  36. Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows

    Clark Di Leoni, Patricio | Mazzino, Andrea | Biferale, Luca

    Physical Review X, Vol. 10 (2020), Iss. 1

    https://doi.org/10.1103/PhysRevX.10.011023 [Citations: 24]
  37. Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations

    García-Archilla, Bosco | Novo, Julia

    Advances in Computational Mathematics, Vol. 46 (2020), Iss. 4

    https://doi.org/10.1007/s10444-020-09806-x [Citations: 11]
  38. Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm

    Celik, Emine | Olson, Eric | Titi, Edriss S.

    SIAM Journal on Applied Dynamical Systems, Vol. 18 (2019), Iss. 2 P.1118

    https://doi.org/10.1137/18M1218480 [Citations: 19]
  39. A detectability criterion and data assimilation for nonlinear differential equations

    Frank, Jason | Zhuk, Sergiy

    Nonlinearity, Vol. 31 (2018), Iss. 11 P.5235

    https://doi.org/10.1088/1361-6544/aaddcb [Citations: 11]
  40. Data assimilation using noisy time-averaged measurements

    Blocher, Jordan | Martinez, Vincent R. | Olson, Eric

    Physica D: Nonlinear Phenomena, Vol. 376-377 (2018), Iss. P.49

    https://doi.org/10.1016/j.physd.2017.12.004 [Citations: 10]
  41. Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)

    Hasegawa, Yuta | Onodera, Naoyuki | Asahi, Yuuichi | Ina, Takuya | Imamura, Toshiyuki | Idomura, Yasuhiro

    Fluid Dynamics Research, Vol. 55 (2023), Iss. 6 P.065501

    https://doi.org/10.1088/1873-7005/ad06bd [Citations: 2]
  42. Recovering critical parameter for nonlinear Allen–Cahn equation by fully discrete continuous data assimilation algorithms *

    Wang, Wansheng | Jin, Chengyu | Huang, Yunqing

    Inverse Problems, Vol. 40 (2024), Iss. 1 P.015008

    https://doi.org/10.1088/1361-6420/ad0e25 [Citations: 0]
  43. Continuous data assimilation for the 3D Ladyzhenskaya model: analysis and computations

    Cao, Yu | Giorgini, Andrea | Jolly, Michael | Pakzad, Ali

    Nonlinear Analysis: Real World Applications, Vol. 68 (2022), Iss. P.103659

    https://doi.org/10.1016/j.nonrwa.2022.103659 [Citations: 5]
  44. Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

    Farhat, Aseel | Lunasin, Evelyn | Titi, Edriss S.

    Journal of Nonlinear Science, Vol. 27 (2017), Iss. 3 P.1065

    https://doi.org/10.1007/s00332-017-9360-y [Citations: 37]
  45. Downscaling the 2D Bénard convection equations using continuous data assimilation

    Altaf, M. U. | Titi, E. S. | Gebrael, T. | Knio, O. M. | Zhao, L. | McCabe, M. F. | Hoteit, I.

    Computational Geosciences, Vol. 21 (2017), Iss. 3 P.393

    https://doi.org/10.1007/s10596-017-9619-2 [Citations: 48]
  46. Convergence analysis of a viscosity parameter recovery algorithm for the 2D Navier–Stokes equations

    Martinez, Vincent R

    Nonlinearity, Vol. 35 (2022), Iss. 5 P.2241

    https://doi.org/10.1088/1361-6544/ac5362 [Citations: 11]
  47. CDAnet: A Physics‐Informed Deep Neural Network for Downscaling Fluid Flows

    Hammoud, Mohamad Abed El Rahman | Titi, Edriss S. | Hoteit, Ibrahim | Knio, Omar

    Journal of Advances in Modeling Earth Systems, Vol. 14 (2022), Iss. 12

    https://doi.org/10.1029/2022MS003051 [Citations: 4]
  48. Stochastic parameterization of the time-relaxation model of turbulence

    Olson, Eric

    Results in Applied Mathematics, Vol. 8 (2020), Iss. P.100114

    https://doi.org/10.1016/j.rinam.2020.100114 [Citations: 0]
  49. Accurate and parallel simulation of the anisotropic dendrite crystal growth by Lagrangian data assimilation with directional operator splitting

    Zheng, Fenglian | Wang, Yan | Xiao, Xufeng

    Computers & Mathematics with Applications, Vol. 175 (2024), Iss. P.416

    https://doi.org/10.1016/j.camwa.2024.10.020 [Citations: 0]
  50. Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database

    Buzzicotti, M. | Bonaccorso, F. | Di Leoni, P. Clark | Biferale, L.

    Physical Review Fluids, Vol. 6 (2021), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.6.050503 [Citations: 44]
  51. Continuous data assimilation for two-phase flow: Analysis and simulations

    Chow, Yat Tin | Leung, Wing Tat | Pakzad, Ali

    Journal of Computational Physics, Vol. 466 (2022), Iss. P.111395

    https://doi.org/10.1016/j.jcp.2022.111395 [Citations: 4]
  52. Dynamically learning the parameters of a chaotic system using partial observations

    Carlson, Elizabeth | Hudson, Joshua | Larios, Adam | Martinez, Vincent R. | Ng, Eunice | Whitehead, Jared P.

    Discrete and Continuous Dynamical Systems, Vol. 42 (2022), Iss. 8 P.3809

    https://doi.org/10.3934/dcds.2022033 [Citations: 14]