A Computational Study of a Data Assimilation Algorithm for the Two-Dimensional Navier-Stokes Equations
Year: 2016
Communications in Computational Physics, Vol. 19 (2016), Iss. 4 : pp. 1094–1110
Abstract
We study the numerical performance of a continuous data assimilation (downscaling) algorithm, based on ideas from feedback control theory, in the context of the two-dimensional incompressible Navier-Stokes equations. Our model problem is to recover an unknown reference solution, asymptotically in time, by using continuous-in-time coarse-mesh nodal-point observational measurements of the velocity field of this reference solution (subsampling), as might be measured by an array of weather vane anemometers. Our calculations show that the required nodal observation density is remarkably less than what is suggested by the analytical study; and is in fact comparable to the number of numerically determining Fourier modes, which was reported in an earlier computational study by the authors. Thus, this method is computationally efficient and performs far better than the analytical estimates suggest.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.060515.161115a
Communications in Computational Physics, Vol. 19 (2016), Iss. 4 : pp. 1094–1110
Published online: 2016-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 17
-
Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations
Larios, Adam | Rebholz, Leo G. | Zerfas, CamilleComputer Methods in Applied Mechanics and Engineering, Vol. 345 (2019), Iss. P.1077
https://doi.org/10.1016/j.cma.2018.09.004 [Citations: 31] -
Identifying the body force from partial observations of a two-dimensional incompressible velocity field
Farhat, Aseel | Larios, Adam | Martinez, Vincent R. | Whitehead, Jared P.Physical Review Fluids, Vol. 9 (2024), Iss. 5
https://doi.org/10.1103/PhysRevFluids.9.054602 [Citations: 2] -
Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations
Mondaini, Cecilia F. | Titi, Edriss S. | Biswas, Animikh | Foias, CiprianAnnales de l'Institut Henri Poincaré C, Analyse non linéaire, Vol. 36 (2019), Iss. 2 P.295
https://doi.org/10.1016/j.anihpc.2018.05.004 [Citations: 25] -
Assimilation of Nearly Turbulent Rayleigh–Bénard Flow Through Vorticity or Local Circulation Measurements: A Computational Study
Farhat, Aseel | Johnston, Hans | Jolly, Michael | Titi, Edriss S.Journal of Scientific Computing, Vol. 77 (2018), Iss. 3 P.1519
https://doi.org/10.1007/s10915-018-0686-x [Citations: 28] -
Analysis and computation of continuous data assimilation algorithms for Lorenz 63 system based on nonlinear nudging techniques
Du, Yi Juan | Shiue, Ming-ChengJournal of Computational and Applied Mathematics, Vol. 386 (2021), Iss. P.113246
https://doi.org/10.1016/j.cam.2020.113246 [Citations: 3] -
Determining the viscosity of the Navier–Stokes equations from observations of finitely many modes
Biswas, Animikh | Hudson, JoshuaInverse Problems, Vol. 39 (2023), Iss. 12 P.125012
https://doi.org/10.1088/1361-6420/ad065f [Citations: 3] -
Efficient dynamical downscaling of general circulation models using continuous data assimilation
Desamsetti, Srinivas | Dasari, Hari Prasad | Langodan, Sabique | Titi, Edriss S. | Knio, Omar | Hoteit, IbrahimQuarterly Journal of the Royal Meteorological Society, Vol. 145 (2019), Iss. 724 P.3175
https://doi.org/10.1002/qj.3612 [Citations: 29] -
Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm
Mondaini, Cecilia F. | Titi, Edriss S.SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 1 P.78
https://doi.org/10.1137/16M110962X [Citations: 33] -
Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations
Biswas, Animikh | Martinez, Vincent R.Nonlinear Analysis: Real World Applications, Vol. 35 (2017), Iss. P.132
https://doi.org/10.1016/j.nonrwa.2016.10.005 [Citations: 24] -
Continuous data assimilation for the 3D and higher-dimensional Navier–Stokes equations with higher-order fractional diffusion
Larios, Adam | Victor, CollinJournal of Mathematical Analysis and Applications, Vol. 540 (2024), Iss. 1 P.128644
https://doi.org/10.1016/j.jmaa.2024.128644 [Citations: 1] -
Data assimilation with higher order finite element interpolants
Jolly, Michael S. | Pakzad, AliInternational Journal for Numerical Methods in Fluids, Vol. 95 (2023), Iss. 3 P.472
https://doi.org/10.1002/fld.5152 [Citations: 3] -
Data Assimilation in Large Prandtl Rayleigh--Bénard Convection from Thermal Measurements
Farhat, A. | Glatt-Holtz, N. E. | Martinez, V. R. | McQuarrie, S. A. | Whitehead, J. P.SIAM Journal on Applied Dynamical Systems, Vol. 19 (2020), Iss. 1 P.510
https://doi.org/10.1137/19M1248327 [Citations: 28] -
Algebraic bounds on the Rayleigh–Bénard attractor
Cao, Yu | Jolly, Michael S | Titi, Edriss S | Whitehead, Jared PNonlinearity, Vol. 34 (2021), Iss. 1 P.509
https://doi.org/10.1088/1361-6544/abb1c6 [Citations: 10] -
Data-driven stochastic spectral modeling for coarsening of the two-dimensional Euler equations on the sphere
Ephrati, Sagy R. | Cifani, Paolo | Viviani, Milo | Geurts, Bernard J.Physics of Fluids, Vol. 35 (2023), Iss. 9
https://doi.org/10.1063/5.0156942 [Citations: 5] -
Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations
Gardner, Matthew | Larios, Adam | Rebholz, Leo G. | Vargun, Duygu | Zerfas, CamilleElectronic Research Archive, Vol. 29 (2021), Iss. 3 P.2223
https://doi.org/10.3934/era.2020113 [Citations: 17] -
Well posedness and maximum entropy approximation for the dynamics of quantitative traits
Boďová, Katarína | Haskovec, Jan | Markowich, PeterPhysica D: Nonlinear Phenomena, Vol. 376-377 (2018), Iss. P.108
https://doi.org/10.1016/j.physd.2017.10.015 [Citations: 3] -
Continuous data assimilation for displacement in a porous medium
Bessaih, H. | Ginting, V. | McCaskill, B.Numerische Mathematik, Vol. 151 (2022), Iss. 4 P.927
https://doi.org/10.1007/s00211-022-01306-y [Citations: 4] -
Data Assimilation Using Time-Delay Nudging in the Presence of Gaussian Noise
Celik, Emine | Olson, EricJournal of Nonlinear Science, Vol. 33 (2023), Iss. 6
https://doi.org/10.1007/s00332-023-09967-1 [Citations: 1] -
Parameter Recovery for the 2 Dimensional Navier--Stokes Equations via Continuous Data Assimilation
Carlson, Elizabeth | Hudson, Joshua | Larios, AdamSIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 1 P.A250
https://doi.org/10.1137/19M1248583 [Citations: 30] -
Continuous and discrete data assimilation with noisy observations for the Rayleigh-Bénard convection: a computational study
Hammoud, Mohamad Abed El Rahman | Le Maître, Olivier | Titi, Edriss S. | Hoteit, Ibrahim | Knio, OmarComputational Geosciences, Vol. 27 (2023), Iss. 1 P.63
https://doi.org/10.1007/s10596-022-10180-4 [Citations: 2] -
Super-Exponential Convergence Rate of a Nonlinear Continuous Data Assimilation Algorithm: The 2D Navier–Stokes Equation Paradigm
Carlson, Elizabeth | Larios, Adam | Titi, Edriss S.Journal of Nonlinear Science, Vol. 34 (2024), Iss. 2
https://doi.org/10.1007/s00332-024-10014-w [Citations: 3] -
The bleeps, the sweeps, and the creeps: Convergence rates for dynamic observer patterns via data assimilation for the 2D Navier–Stokes equations
Franz, Trenton | Larios, Adam | Victor, CollinComputer Methods in Applied Mechanics and Engineering, Vol. 392 (2022), Iss. P.114673
https://doi.org/10.1016/j.cma.2022.114673 [Citations: 9] -
Sensitivity Analysis for the 2D Navier–Stokes Equations with Applications to Continuous Data Assimilation
Carlson, Elizabeth | Larios, AdamJournal of Nonlinear Science, Vol. 31 (2021), Iss. 5
https://doi.org/10.1007/s00332-021-09739-9 [Citations: 13] -
On the reconstruction of unknown driving forces from low-mode observations in the 2D Navier–Stokes equations
Martinez, Vincent R.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Vol. (2024), Iss. P.1
https://doi.org/10.1017/prm.2024.31 [Citations: 0] -
A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier--Stokes Equations and Their Statistics
Foias, Ciprian | Mondaini, Cecilia F. | Titi, Edriss S.SIAM Journal on Applied Dynamical Systems, Vol. 15 (2016), Iss. 4 P.2109
https://doi.org/10.1137/16M1076526 [Citations: 69] -
A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation
Jolly, Michael S. | Martinez, Vincent R. | Titi, Edriss S.Advanced Nonlinear Studies, Vol. 17 (2017), Iss. 1 P.167
https://doi.org/10.1515/ans-2016-6019 [Citations: 35] -
Direct and Large Eddy Simulation XIII
Stochastic Data-Driven POD-Based Modeling for High-Fidelity Coarsening of Two-Dimensional Rayleigh-Bénard Turbulence
Ephrati, S. R. | Cifani, P. | Geurts, B. J.2024
https://doi.org/10.1007/978-3-031-47028-8_32 [Citations: 1] -
Variational data assimilation with finite-element discretization for second-order parabolic interface equation
Li, Xuejian | He, Xiaoming | Gong, Wei | Douglas, Craig CIMA Journal of Numerical Analysis, Vol. (2024), Iss.
https://doi.org/10.1093/imanum/drae010 [Citations: 0] -
Uniform in Time Error Estimates for a Finite Element Method Applied to a Downscaling Data Assimilation Algorithm for the Navier--Stokes Equations
García-Archilla, Bosco | Novo, Julia | Titi, Edriss S.SIAM Journal on Numerical Analysis, Vol. 58 (2020), Iss. 1 P.410
https://doi.org/10.1137/19M1246845 [Citations: 24] -
One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations
Foias, Ciprian | Jolly, Michael S. | Lithio, Dan | Titi, Edriss S.Journal of Nonlinear Science, Vol. 27 (2017), Iss. 5 P.1513
https://doi.org/10.1007/s00332-017-9375-4 [Citations: 5] -
Continuous Data Assimilation for the Three-Dimensional Navier--Stokes Equations
Biswas, Animikh | Price, RandySIAM Journal on Mathematical Analysis, Vol. 53 (2021), Iss. 6 P.6697
https://doi.org/10.1137/20M1323229 [Citations: 18] -
Data assimilation with model error: Analytical and computational study for Sabra shell model
Chen, Nan | Farhat, Aseel | Lunasin, EvelynPhysica D: Nonlinear Phenomena, Vol. 443 (2023), Iss. P.133552
https://doi.org/10.1016/j.physd.2022.133552 [Citations: 1] -
Continuous data assimilation for downscaling large-footprint soil moisture retrievals
Neale, Christopher M. U. | Maltese, Antonino | Altaf, Muhammad U. | Jana, Raghavendra B. | Hoteit, Ibrahim | McCabe, Matthew F.Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, (2016), P.99981O
https://doi.org/10.1117/12.2241042 [Citations: 0] -
Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates
Ibdah, Hussain A | Mondaini, Cecilia F | Titi, Edriss SIMA Journal of Numerical Analysis, Vol. 40 (2020), Iss. 4 P.2584
https://doi.org/10.1093/imanum/drz043 [Citations: 22] -
Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging
Clark Di Leoni, Patricio | Mazzino, Andrea | Biferale, LucaPhysical Review Fluids, Vol. 3 (2018), Iss. 10
https://doi.org/10.1103/PhysRevFluids.3.104604 [Citations: 36] -
Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows
Clark Di Leoni, Patricio | Mazzino, Andrea | Biferale, LucaPhysical Review X, Vol. 10 (2020), Iss. 1
https://doi.org/10.1103/PhysRevX.10.011023 [Citations: 24] -
Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations
García-Archilla, Bosco | Novo, JuliaAdvances in Computational Mathematics, Vol. 46 (2020), Iss. 4
https://doi.org/10.1007/s10444-020-09806-x [Citations: 11] -
Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm
Celik, Emine | Olson, Eric | Titi, Edriss S.SIAM Journal on Applied Dynamical Systems, Vol. 18 (2019), Iss. 2 P.1118
https://doi.org/10.1137/18M1218480 [Citations: 19] -
A detectability criterion and data assimilation for nonlinear differential equations
Frank, Jason | Zhuk, SergiyNonlinearity, Vol. 31 (2018), Iss. 11 P.5235
https://doi.org/10.1088/1361-6544/aaddcb [Citations: 11] -
Data assimilation using noisy time-averaged measurements
Blocher, Jordan | Martinez, Vincent R. | Olson, EricPhysica D: Nonlinear Phenomena, Vol. 376-377 (2018), Iss. P.49
https://doi.org/10.1016/j.physd.2017.12.004 [Citations: 10] -
Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)
Hasegawa, Yuta | Onodera, Naoyuki | Asahi, Yuuichi | Ina, Takuya | Imamura, Toshiyuki | Idomura, YasuhiroFluid Dynamics Research, Vol. 55 (2023), Iss. 6 P.065501
https://doi.org/10.1088/1873-7005/ad06bd [Citations: 2] -
Recovering critical parameter for nonlinear Allen–Cahn equation by fully discrete continuous data assimilation algorithms *
Wang, Wansheng | Jin, Chengyu | Huang, YunqingInverse Problems, Vol. 40 (2024), Iss. 1 P.015008
https://doi.org/10.1088/1361-6420/ad0e25 [Citations: 0] -
Continuous data assimilation for the 3D Ladyzhenskaya model: analysis and computations
Cao, Yu | Giorgini, Andrea | Jolly, Michael | Pakzad, AliNonlinear Analysis: Real World Applications, Vol. 68 (2022), Iss. P.103659
https://doi.org/10.1016/j.nonrwa.2022.103659 [Citations: 5] -
Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone
Farhat, Aseel | Lunasin, Evelyn | Titi, Edriss S.Journal of Nonlinear Science, Vol. 27 (2017), Iss. 3 P.1065
https://doi.org/10.1007/s00332-017-9360-y [Citations: 37] -
Downscaling the 2D Bénard convection equations using continuous data assimilation
Altaf, M. U. | Titi, E. S. | Gebrael, T. | Knio, O. M. | Zhao, L. | McCabe, M. F. | Hoteit, I.Computational Geosciences, Vol. 21 (2017), Iss. 3 P.393
https://doi.org/10.1007/s10596-017-9619-2 [Citations: 48] -
Convergence analysis of a viscosity parameter recovery algorithm for the 2D Navier–Stokes equations
Martinez, Vincent R
Nonlinearity, Vol. 35 (2022), Iss. 5 P.2241
https://doi.org/10.1088/1361-6544/ac5362 [Citations: 11] -
CDAnet: A Physics‐Informed Deep Neural Network for Downscaling Fluid Flows
Hammoud, Mohamad Abed El Rahman | Titi, Edriss S. | Hoteit, Ibrahim | Knio, OmarJournal of Advances in Modeling Earth Systems, Vol. 14 (2022), Iss. 12
https://doi.org/10.1029/2022MS003051 [Citations: 4] -
Stochastic parameterization of the time-relaxation model of turbulence
Olson, Eric
Results in Applied Mathematics, Vol. 8 (2020), Iss. P.100114
https://doi.org/10.1016/j.rinam.2020.100114 [Citations: 0] -
Accurate and parallel simulation of the anisotropic dendrite crystal growth by Lagrangian data assimilation with directional operator splitting
Zheng, Fenglian | Wang, Yan | Xiao, XufengComputers & Mathematics with Applications, Vol. 175 (2024), Iss. P.416
https://doi.org/10.1016/j.camwa.2024.10.020 [Citations: 0] -
Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database
Buzzicotti, M. | Bonaccorso, F. | Di Leoni, P. Clark | Biferale, L.Physical Review Fluids, Vol. 6 (2021), Iss. 5
https://doi.org/10.1103/PhysRevFluids.6.050503 [Citations: 44] -
Continuous data assimilation for two-phase flow: Analysis and simulations
Chow, Yat Tin | Leung, Wing Tat | Pakzad, AliJournal of Computational Physics, Vol. 466 (2022), Iss. P.111395
https://doi.org/10.1016/j.jcp.2022.111395 [Citations: 4] -
Dynamically learning the parameters of a chaotic system using partial observations
Carlson, Elizabeth | Hudson, Joshua | Larios, Adam | Martinez, Vincent R. | Ng, Eunice | Whitehead, Jared P.Discrete and Continuous Dynamical Systems, Vol. 42 (2022), Iss. 8 P.3809
https://doi.org/10.3934/dcds.2022033 [Citations: 14]