Year: 2016
Communications in Computational Physics, Vol. 19 (2016), Iss. 5 : pp. 1111–1140
Abstract
We propose an entropy stable high-resolution finite volume scheme to approximate systems of two-dimensional symmetrizable conservation laws on unstructured grids. In particular we consider Euler equations governing compressible flows. The scheme is constructed using a combination of entropy conservative fluxes and entropy-stable numerical dissipation operators. High resolution is achieved based on a linear reconstruction procedure satisfying a suitable sign property that helps to maintain entropy stability. The proposed scheme is demonstrated to robustly approximate complex flow features by a series of benchmark numerical experiments.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.scpde14.43s
Communications in Computational Physics, Vol. 19 (2016), Iss. 5 : pp. 1111–1140
Published online: 2016-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 30
-
A New Thermodynamically Compatible Finite Volume Scheme for Lagrangian Gas Dynamics
Boscheri, Walter | Dumbser, Michael | Maire, Pierre-HenriSIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2224
https://doi.org/10.1137/23M1580863 [Citations: 0] -
Skew-Symmetric Entropy Stable Modal Discontinuous Galerkin Formulations
Chan, Jesse
Journal of Scientific Computing, Vol. 81 (2019), Iss. 1 P.459
https://doi.org/10.1007/s10915-019-01026-w [Citations: 23] -
Entropy stabilization and property-preserving limiters for ℙ1 discontinuous Galerkin discretizations of scalar hyperbolic problems
Kuzmin, Dmitri
Journal of Numerical Mathematics, Vol. 29 (2021), Iss. 4 P.307
https://doi.org/10.1515/jnma-2020-0056 [Citations: 12] -
Numerical Simulation in Physics and Engineering: Trends and Applications
Consistent Internal Energy Based Schemes for the Compressible Euler Equations
Gallouët, T. | Herbin, R. | Latché, J. -C. | Therme, N.2021
https://doi.org/10.1007/978-3-030-62543-6_3 [Citations: 1] -
Algebraic entropy fixes and convex limiting for continuous finite element discretizations of scalar hyperbolic conservation laws
Kuzmin, Dmitri | Quezada de Luna, ManuelComputer Methods in Applied Mechanics and Engineering, Vol. 372 (2020), Iss. P.113370
https://doi.org/10.1016/j.cma.2020.113370 [Citations: 11] -
A New Family of Thermodynamically Compatible Discontinuous Galerkin Methods for Continuum Mechanics and Turbulent Shallow Water Flows
Busto, Saray | Dumbser, MichaelJournal of Scientific Computing, Vol. 93 (2022), Iss. 2
https://doi.org/10.1007/s10915-022-02017-0 [Citations: 2] -
A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics
Abgrall, Rémi | Busto, Saray | Dumbser, MichaelApplied Mathematics and Computation, Vol. 440 (2023), Iss. P.127629
https://doi.org/10.1016/j.amc.2022.127629 [Citations: 8] -
Numerical Approximation of Hyperbolic Systems of Conservation Laws
The Case of Multidimensional Systems
Godlewski, Edwige | Raviart, Pierre-Arnaud2021
https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0] -
Entropy stable numerical approximations for the isothermal and polytropic Euler equations
Winters, Andrew R. | Czernik, Christof | Schily, Moritz B. | Gassner, Gregor J.BIT Numerical Mathematics, Vol. 60 (2020), Iss. 3 P.791
https://doi.org/10.1007/s10543-019-00789-w [Citations: 9] -
Deep learning observables in computational fluid dynamics
Lye, Kjetil O. | Mishra, Siddhartha | Ray, DeepJournal of Computational Physics, Vol. 410 (2020), Iss. P.109339
https://doi.org/10.1016/j.jcp.2020.109339 [Citations: 92] -
Entropy stable essentially nonoscillatory methods based on RBF reconstruction
Hesthaven, Jan S. | Mönkeberg, FabianESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.925
https://doi.org/10.1051/m2an/2019011 [Citations: 18] -
On the robustness and performance of entropy stable collocated discontinuous Galerkin methods
Rojas, Diego | Boukharfane, Radouan | Dalcin, Lisandro | Del Rey Fernández, David C. | Ranocha, Hendrik | Keyes, David E. | Parsani, MatteoJournal of Computational Physics, Vol. 426 (2021), Iss. P.109891
https://doi.org/10.1016/j.jcp.2020.109891 [Citations: 21] -
On discretely entropy conservative and entropy stable discontinuous Galerkin methods
Chan, Jesse
Journal of Computational Physics, Vol. 362 (2018), Iss. P.346
https://doi.org/10.1016/j.jcp.2018.02.033 [Citations: 101] -
A multi-level procedure for enhancing accuracy of machine learning algorithms
LYE, KJETIL O. | MISHRA, SIDDHARTHA | MOLINARO, ROBERTOEuropean Journal of Applied Mathematics, Vol. 32 (2021), Iss. 3 P.436
https://doi.org/10.1017/S0956792520000224 [Citations: 18] -
Recent Advances in Numerical Methods for Hyperbolic PDE Systems
Entropy Stable Numerical Fluxes for Compressible Euler Equations Which Are Suitable for All Mach Numbers
Berberich, Jonas P. | Klingenberg, Christian2021
https://doi.org/10.1007/978-3-030-72850-2_8 [Citations: 0] -
Entropy stable scheme for ideal MHD equations on adaptive unstructured meshes
Zhang, Chengzhi | Zheng, Supei | Feng, Jianhu | Liu, ShashaComputers & Fluids, Vol. 285 (2024), Iss. P.106445
https://doi.org/10.1016/j.compfluid.2024.106445 [Citations: 0] -
Handbook of Numerical Methods for Hyperbolic Problems - Basic and Fundamental Issues
Entropy Stable Schemes
Tadmor, E.
2016
https://doi.org/10.1016/bs.hna.2016.09.006 [Citations: 20] -
Entropy conserving/stable schemes for a vector-kinetic model of hyperbolic systems
Anandan, Megala | Raghurama Rao, S.V.Applied Mathematics and Computation, Vol. 465 (2024), Iss. P.128410
https://doi.org/10.1016/j.amc.2023.128410 [Citations: 1] -
A New Thermodynamically Compatible Finite Volume Scheme for Magnetohydrodynamics
Busto, Saray | Dumbser, MichaelSIAM Journal on Numerical Analysis, Vol. 61 (2023), Iss. 1 P.343
https://doi.org/10.1137/22M147815X [Citations: 12] -
An Entropy Stable Scheme for Shallow Water Equations Based on Entropy Conservative Scheme
张, 志壮
Advances in Applied Mathematics, Vol. 11 (2022), Iss. 08 P.5648
https://doi.org/10.12677/AAM.2022.118596 [Citations: 0] -
The scaled entropy variables reconstruction for entropy stable schemes with application to shallow water equations
Liu, Qingsheng | Liu, Youqiong | Feng, JianhuComputers & Fluids, Vol. 192 (2019), Iss. P.104266
https://doi.org/10.1016/j.compfluid.2019.104266 [Citations: 4] -
Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates
Del Rey Fernández, David C. | Crean, Jared | Carpenter, Mark H. | Hicken, Jason E.Journal of Computational Physics, Vol. 392 (2019), Iss. P.161
https://doi.org/10.1016/j.jcp.2019.04.029 [Citations: 23] -
An Entropy-stable Ideal EC-GLM-MHD Model for the Simulation of the Three-dimensional Ambient Solar Wind
Li, Caixia | Feng, Xueshang | Wei, FengsiThe Astrophysical Journal Supplement Series, Vol. 257 (2021), Iss. 2 P.24
https://doi.org/10.3847/1538-4365/ac16d5 [Citations: 3] -
Entropy Stable Finite Difference Schemes for Compressible Euler Equations
周, 翔宇
Advances in Applied Mathematics, Vol. 11 (2022), Iss. 09 P.6331
https://doi.org/10.12677/AAM.2022.119669 [Citations: 0] -
High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto)hydrodynamics
Duan, Junming | Tang, HuazhongJournal of Computational Physics, Vol. 456 (2022), Iss. P.111038
https://doi.org/10.1016/j.jcp.2022.111038 [Citations: 11] -
Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems
Kuzmin, Dmitri | Hajduk, Hennes | Rupp, AndreasComputer Methods in Applied Mechanics and Engineering, Vol. 389 (2022), Iss. P.114428
https://doi.org/10.1016/j.cma.2021.114428 [Citations: 18] -
High order entropy preserving ADER-DG schemes
Gaburro, Elena | Öffner, Philipp | Ricchiuto, Mario | Torlo, DavideApplied Mathematics and Computation, Vol. 440 (2023), Iss. P.127644
https://doi.org/10.1016/j.amc.2022.127644 [Citations: 12] -
Entropy-stable p-nonconforming discretizations with the summation-by-parts property for the compressible Navier–Stokes equations
Fernández, David C. Del Rey | Carpenter, Mark H. | Dalcin, Lisandro | Fredrich, Lucas | Winters, Andrew R. | Gassner, Gregor J. | Parsani, MatteoComputers & Fluids, Vol. 210 (2020), Iss. P.104631
https://doi.org/10.1016/j.compfluid.2020.104631 [Citations: 8] -
Global entropy stability for a class of unlimited second-order schemes for 2D hyperbolic systems of conservation laws on unstructured meshes
Martaud, Ludovic
Journal of Computational Physics, Vol. 487 (2023), Iss. P.112176
https://doi.org/10.1016/j.jcp.2023.112176 [Citations: 0] -
Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws
Chen, Tianheng | Shu, Chi-WangJournal of Computational Physics, Vol. 345 (2017), Iss. P.427
https://doi.org/10.1016/j.jcp.2017.05.025 [Citations: 164] -
Entropy Stable Schemes For Ten-Moment Gaussian Closure Equations
Sen, Chhanda | Kumar, HarishJournal of Scientific Computing, Vol. 75 (2018), Iss. 2 P.1128
https://doi.org/10.1007/s10915-017-0579-4 [Citations: 11] -
Entropy stable reduced order modeling of nonlinear conservation laws
Chan, Jesse
Journal of Computational Physics, Vol. 423 (2020), Iss. P.109789
https://doi.org/10.1016/j.jcp.2020.109789 [Citations: 26] -
A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes
Abgrall, R.
Journal of Computational Physics, Vol. 372 (2018), Iss. P.640
https://doi.org/10.1016/j.jcp.2018.06.031 [Citations: 57] -
An entropy stable finite volume scheme for the two dimensional Navier–Stokes equations on triangular grids
Ray, Deep | Chandrashekar, PraveenApplied Mathematics and Computation, Vol. 314 (2017), Iss. P.257
https://doi.org/10.1016/j.amc.2017.07.020 [Citations: 3] -
A New Class of Simple, General and Efficient Finite Volume Schemes for Overdetermined Thermodynamically Compatible Hyperbolic Systems
Busto, Saray | Dumbser, MichaelCommunications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.1742
https://doi.org/10.1007/s42967-023-00307-4 [Citations: 3] -
Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics
Derigs, Dominik | Gassner, Gregor J. | Walch, Stefanie | Winters, Andrew R.Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 120 (2018), Iss. 3 P.153
https://doi.org/10.1365/s13291-018-0178-9 [Citations: 6]